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The lattice of all clones of self-dual functions in three-valued
logic is described. Even though this lattice contains a continuum
of clones, a simple description was found. Using this description
various properties of the lattice and of the clones were derived.
Pairwise inclusion of the clones into each other was described,
and bases for all clones were found. Also, for each clone the
relation degree, the cardinalities of the corresponding principal
filter and principal ideal were determined.
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Preamble
This paper is devoted to the classical problem of Clone Theory: finding a
description of the lattice of clones. In [10], [11] Post described all clones
in two-valued logic. It turned out that all such clones are finitely generated
and the lattice of these clones is countable. But in 1959 it was proved that
there exists a continuum of clones in k-valued logic for k ≥ 3 [6]. Hence,
it seems hardly possible to obtain a complete description of the lattice of all
clones even in three-valued case. Nevertheless, Jablonskij [4] described all
maximal (also known as precomplete) clones in three-valued logic. It turned
out that all maximal clones except the clone of all linear functions contain a
continuum of subclones [3, 8].

This paper is devoted to the maximal clone of self-dual functions. It con-

sists of all functions that preserve the relation
(

0 1 2

1 2 0

)
. Important results

on this subject were obtained by Marchenkov. He and co-authors found many
clones of self-dual functions [9] and showed that there exists a continuum of
such clones [8].

In spite of continuum cardinality we found a complete description of all
clones of self-dual functions, which is presented in this paper. Thus, this is
the first maximal clone besides the clone of all linear functions that has such
description.

In the paper we define a set of predicates Π (we do not distinguish sharply
between relations and predicates; since we operate with formulas, it is usually
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proper for us to use the word predicate). Using these predicates we define a
class of clones Υ that has continuum cardinality. These are all clones of self-
dual functions except countably many clones. The other clones are divided
into two classes Θ and Φ. The finite class Θ consists of all clones that are
self-dual with respect to the permutation of 0 and 1. The countable class Φ

contains all remaining clones. Note that all clones in the finite class Θ and
many clones in the countable class Φ were already found in [9]. In the defi-
nition of the class Φ we say precisely which clones are already known from
[9] and which are new. Thus, the main result of this paper is the description
of the class Υ.

Every clone is defined as the set of all functions that preserve some set of
relations (finite or infinite). We find the relation degree for every clone, and
thereby prove that our description is minimal.

Using the description we show various properties of the lattice and of the
clones. It is well-known that some clones in three-valued logic have no basis
[6]. Nevertheless, we prove that every clone of self-dual functions has a basis
(finite or infinite), and we present bases for all of them.

We also describe pairwise inclusion of the clones into each other. For
the finite and countable classes of clones pairwise inclusion is shown by a
graph in Figure 2. For the class of clones Υ we formulate theorems that
describe pairwise inclusion. Finally, for each clone in the lattice we find the
cardinalities of the corresponding principal filter and principal ideal.

As expected, the description of the class Υ is rather complicated. Never-
theless, all listed properties can be easily derived from it. Moreover, in the
first section we show that using our description we can easily obtain every
finite sublattice of the part of the lattice that has continuum cardinality. We
present the lattice of all clones that can be defined by predicates of arity 4.
This lattice was found without a computer. Of course, using a computer big-
ger sublattices can be completely described.

To obtain the main result we essentially use the Galois connection between
clones and relational clones. Moreover, we do not use the closure operator
for functions, and functions are only auxiliary objects in the paper. It can be

said that we find relational clones that contain the relation
(

0 1 2

1 2 0

)
.

The main idea of the proof is the following. We introduce a notion of an
essential predicate. Essential predicates are all predicates that can not be pre-
sented as a conjunction of predicates with smaller arities. A closure operator
is defined on the set of all essential predicates, and it is proved that there ex-
ists a one-to-one correspondence between relational clones and closed sets of
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essential predicates. Thus, to describe all clones we just need to describe all
closed sets of essential predicates. The set of all essential predicates is small
enough, and for most clones of self-dual functions we completely describe all
essential predicates that are preserved by functions from this clone.

This paper is organized as follows. In Section 1 we give main defini-
tions and formulate main results of the paper. There we define three classes
of clones, describe pairwise inclusion of clones into each other, and present
bases for all clones. At the end of this section we formulate theorems that for
every clone determine the relation degree, the cardinalities of the correspond-
ing principal filter and principal ideal.

In Section 2 we introduce necessary notions and prove important proper-
ties related to these notions. There we define a closure operator for predicates
and the Galois connection between clones and relational clones. Then, neces-
sary notations are described. After that we formulate the notion of an essen-
tial predicate and prove various properties of essential predicates. At the last
part of this section we define the closure operator on the set of all essential
predicates and prove important properties of this closure operator.

Section 3 is devoted to the construction of the classes Φ and Υ. Firstly,
we describe all essential predicates that are preserved by the self-dual exten-
sion of disjunction. Then, we sequentially construct the lattice of the clones.
Finally, we prove that if a clone contains the extension of disjunction and
preserves the set {0, 1}, then this clone belongs to Φ, Υ, or Θ.

In Section 4 we prove the main statements and theorems of this paper.
Firstly, we show that clones from Θ ∪ Φ ∪Υ are all clones of self-dual func-
tions in three-valued logic. Then we prove theorems about pairwise inclusion
of clones into each other, theorems related to bases of clones, the relation
degree of clones, and other statements.

At the end of the paper we give a list of main notations.
Note that the preliminary version of this result was already published in

the book [12] in Russian.
The author is grateful to V. B. Kudryavtsev for supervision. This paper

is started from a Haskell program developed by S. Moiseev that constructed
clones in three-valued logic defined by predicates of small arities. Also, the
author is grateful to A. Chernova for preparing figures for the paper. Finally,
I want to thank the referees of the paper for careful reading and very useful
remarks.
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1 MAIN STATEMENTS AND THEOREMS.

1.1 Main definitions.
Let N = {1, 2, 3, . . .}, N0 = {0} ∪ N, Ek = {0, 1, 2, . . . , k − 1}, for n ∈ N

Pnk = {f | f : Enk → Ek}, Pk =
⋃
n≥1

Pnk .

Suppose F ⊆ Pk, then by [F ] we denote the closure of F under superpo-
sition [7]. A set F ⊆ Pk is called a clone if F is closed and F contains all
projections. By Jk we denote the set of all projections. The clones form an
algebraic lattice whose least element is Jk and whose greatest element is Pk.

A mapping Ehk → {0, 1} is called an h-ary predicate. For h ∈ N0 let

Rhk = {ρ | ρ : Ehk → {0, 1}}, Rk =
⋃
h≥0

Rhk .

As mentioned above, we do not distinguish between predicates and relations.
So instead of ρ(a1, . . . , an) = 1 we also write (a1, . . . , an) ∈ ρ. Sometimes
we write a1a2 . . . ah instead of (a1, a2, . . . , ah) and operate with tuples like
with words. Let α ∈ Ehk , then by α(i) we denote the i-th element of α. We
suppose that functions from Pk are also defined in the usual way on tuples
or words from Ehk . That is, suppose α1, . . . , αn ∈ Ehk , f ∈ Pnk , then we put
f(α1, . . . , αn) = β, where β ∈ Ehk , β(i) = f(α1(i), α2(i), . . . , αn(i)) for
every i ∈ {1, 2, . . . , h}.

In this paper predicates are often written as matrices. We write

ρ =


b1,1 b2,1 . . . bn,1
b1,2 b2,2 . . . bn,2
. . . . . . . . . . . .

b1,h b2,h . . . bn,h


if ρ ∈ Rhk , ρ(bi,1, bi,2, . . . , bi,h) = 1 for every i ∈ {1, 2, . . . , n} and the
predicate ρ is equal to 0 on the other tuples.

We say that a function f ∈ Pmk preserves a predicate ρ if

f(α1, α2, . . . , αm) ∈ ρ

for every α1, α2, . . . , αm ∈ ρ.
By Pol(ρ) we denote the set of all functions f ∈ Pk that preserve a predi-

cate ρ. For S ⊆ Rk we put Pol(S) =
⋂
ρ∈S

Pol(ρ).
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By Inv(f) we denote the set of all predicates ρ ∈ Rk that are preserved
by a function f. For M ⊆ Pk we put Inv(M) =

⋂
f∈M

Inv(f).

Let σ : E3 −→ E3, σ(0) = 1, σ(1) = 0, σ(2) = 2. For ρ ∈ R3 by ρ∗ we
denote the predicate that is dual to ρ with respect to the transposition σ:

ρ∗(x1, . . . , xn) := ρ(σ(x1), σ(x2), . . . , σ(xn)).

Note that this duality is not the same as the duality in the definition of self-
dual functions, which is the duality with respect to the cyclic permutation of
0,1 and 2. Suppose S ⊆ R3, then put S∗ := {ρ∗ | ρ ∈ S}.

1.2 The lattice of the clones
Now we define several predicates, which we are going to use to define the
three classes of clones.

ρ+1 =

(
0 1 2

1 2 0

)
, ρ≤ =

(
0 0 1

0 1 1

)
,

ρN =

(
0 1 1 1

0 0 1 2

)
, ρW =

(
0 0 1 1 1

0 1 0 1 2

)
,

ρT =

(
0 1 2

1 0 2

)
, ρ 6=,01 =

(
0 1

1 0

)
, ρ 6= =

(
0 0 1 1 2 2

1 2 0 2 0 1

)
,

ρx+y+z(x1, x2, x3) = 1⇔ x1 + x2 + x3 = 0(mod 3),

ρx⊕y⊕z(x1, x2, x3) = 1⇔
(∀i xi ∈ {0, 1}) ∧ (x1 + x2 + x3 = 0(mod 2)),

ρ∨,n(x1, . . . , xn) = 1⇔
(∀i xi ∈ {0, 1}) ∧ ((x1 = 1) ∨ (x2 = 1) ∨ . . . ∨ (xn = 1)),

ρ→,n(x1, . . . , xn, xn+1) = 1⇔
(∀i xi ∈ {0, 1}) ∧ ((x1 = 1) ∨ . . . ∨ (xn = 1) ∨ (xn+1 = 0)).

In other words, ρ∨,n = {0, 1}n \ {0n}, ρ→,n = {0, 1}n+1 \ {0n1}.

ρ=,01(x1, x2, x3) = 1⇔
(x1 = 1) ∨ ((x1 = 0) ∧ (x2, x3 ∈ {0, 1}) ∧ (x2 = x3)),
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ρ=,012(x1, x2, x3) = 1⇔ (x1 = 1) ∨ ((x1 = 0) ∧ (x2 = x3)).

Class Θ of clones.

S = Pol (ρ+1) , S0 = Pol ({ρ+1, {0}}) ,

SL = Pol ({ρ+1, ρx+y+z}) , SL0 = Pol ({ρ+1, ρx+y+z, {0}}) ,

1S = [{(x+ 1)(mod 3)}] = Pol ({ρ+1, ρ6=}) , T = Pol ({ρ+1, ρT }) ,

C = Pol ({ρ+1, {0, 1}}) , D = Pol ({ρ+1, ρ6=,01}) ,

M = Pol ({ρ+1, ρ≤}) , DM = D ∩M, DN = Pol ({ρ+1, ρN , ρ
∗
N}) ,

TD = T ∩D, TM = T ∩M, TN = DN ∩T,

L2 = Pol ({ρ+1, ρx⊕y⊕z}) , TL2 = L2 ∩T,

C2 = L2 ∩M, TC2 = C2 ∩T, J3 = [{x}].

Note that all clones from the class Θ were already found in [9].
Relations in Π. We will need the following notation to define the classes

Φ and Υ. Let m ∈ N, n ∈ N0. By Dm
n we denote the set of all tuples

(A1, . . . , Am) such that A1, . . . , Am ⊆ {1, 2, . . . , n}, A1 ∪ . . . ∪ Am =

{1, 2, . . . , n}. In case of n = 0 we have A1 = A2 = . . . = Am = ∅.
Put D =

⋃
m+n≥3

Dm
n . Let us define several binary relations on the set D.

Suppose
(A′1, . . . , A

′
m′) ∈ Dm′

n′ , (A1, . . . , Am) ∈ Dm
n .

Relation '. Let

(A′1, . . . , A
′
m′) ' (A1, . . . , Am)

iff m′ = m, n′ = n, and there exists a permutation σ : {1, 2, . . . , n} →
{1, 2, . . . , n} such that A′i = σ(Ai) for every i ∈ {1, 2, . . . ,m}.

Relation .1. Let

(A′1, . . . , A
′
m′) .

1 (A1, . . . , Am)

iff m′ ≥ m, n′ ≤ n, m′ + n′ = m + n, A′i = Ai ∩ {1, 2, . . . , n′} for
i ∈ {1, 2, . . . ,m}, A′i = ∅ for i ∈ {m+ 1,m+ 2, . . . ,m′}.

Relation .2. Let

(A′1, . . . , A
′
m′) .

2 (A1, . . . , Am)
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iff m′ ≤ m, n′ = n, and the set {1, 2, . . . ,m} can be divided into non-
overlapping nonempty sets K1,K2, . . . ,Km′ such that A′i =

⋃
j∈Ki

Aj for

every i ∈ {1, 2, . . . ,m′}.
Relation .3. Let

(A′1, . . . , A
′
m′) .

3 (A1, . . . , Am)

iff m′ = m, n′ = n, A′i ⊇ Ai for every i ∈ {1, 2, . . . ,m}.
Relation .. Suppose Ω,Ω′ ∈ D, then put Ω′ . Ω iff

∃Ω1∃Ω2∃Ω3 (Ω′ .3 Ω3 ∧ Ω3 .2 Ω2 ∧ Ω2 .1 Ω1 ∧ Ω1 ' Ω).

The proof of the following lemma is rather simple, but cumbersome. That
is why we omit the proof and refer the reader to [12].

Lemma 1.1. The binary relation . is transitive and reflexive.

Hence the binary relation . determines a quasiorder on the set D.
Note that (∅,∅,∅) . (A1, . . . , Am) for every (A1, . . . , Am) ∈ D.
To each (A1, . . . , Am) ∈ Dm

n we assign the predicate πA1,...,Am
∈ Rm+n

3

such that
πA1,...,Am(x1, . . . , xm, y1, . . . , yn) = 1

iff the following conditions hold:

1. ∀i(xi = 1 ∨ (xi = 0 ∧ (∀j ∈ Ai : yj ∈ {0, 1})));

2. at least one of the values x1, . . . , xm, y1, . . . , yn is not equal to 0.

It easy to check that π∅, . . . ,∅︸ ︷︷ ︸
n

= ρ∨,n for n ≥ 3.

By Πm
n we denote the set of all predicates πA1,...,Am

∈ Rm+n
3 such that

(A1, . . . , Am) ∈ Dm
n .

Put Πl =
⋃

3≤m+n≤l
Πm
n ,Πl =

⋃
n≤l,m+n≥3

Πm
n ,Π =

⋃
l

Πl. It can be easily

shown that we have a one-to-one correspondence between elements of D
and elements of Π. Then, the binary relations ',.1,.2,.3,. define the
corresponding binary relations on the set Π. For example, the binary relation
. on the set Π is defined as follows

πA′1,...,A′m′ . πA1,...,Am
⇐⇒ (A′1, . . . , A

′
m′) . (A1, . . . , Am).
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We say that predicates ρ1 and ρ2 from Π are equivalent if ρ1 . ρ2 and
ρ2 . ρ1. It can be easily checked that two predicates are equivalent iff one
can be obtained from another by a permutation of variables. Obviously, the
quasiorder . generates a partial order on the set of the equivalence classes.
The quasiorder . on the set Π up to arity 4 is shown in Figure 1 by a Hasse
diagram for the corresponding partial order.

π{1,2,3}

π{1,2},∅
π{1},{2}

π{1,2},{1}

π{1,2},{1,2} π{1},∅,∅

π{1},{1},∅π{1,2}

π{1},∅ π{1},{1},{1}

π{1},{1} π∅,∅,∅,∅

π∅,∅,∅

FIGURE 1
Quasiorder on the set Π up to arity 4

We say that a set F ⊆ Π is a downset if

∀ρ ∈ F ∀ρ′ ∈ Π (ρ′ . ρ =⇒ ρ′ ∈ F ).

By Π̃ we denote the set of all nonempty downsets of Π.

Class Φ of clones.
For n ≥ 2

an = Pol ({ρ+1, ρ∨,n}) , An = Pol
({
ρ+1, ρ

∗
∨,n
})
,
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anM = an ∩M, AnM = An ∩M,

anN = Pol ({ρ+1, ρ∨,n, ρN}) , AnN = Pol
({
ρ+1, ρ

∗
∨,n, ρ

∗
N

})
,

a∞ =
⋂
i≥2

ai, A∞ =
⋂
i≥2

Ai,

a∞M =
⋂
i≥2

aiM, A∞M =
⋂
i≥2

AiM,

a∞N =
⋂
i≥2

aiN, A∞N =
⋂
i≥2

AiN,

aP = Pol ({ρ+1, ρ→,2}) , AP = Pol
({
ρ+1, ρ

∗
→,2
})
,

aPN = Pol ({ρ+1, ρ→,2, ρN}) , APN = Pol
({
ρ+1, ρ

∗
→,2, ρ

∗
N

})
,

aP1 = Pol ({ρ+1, ρ→,2, ρW }) , AP1 = Pol
({
ρ+1, ρ

∗
→,2, ρ

∗
W

})
.

For n ≥ 2

aPn = aP1 ∩ Pol(π{1,2,...,n}), APn = AP1 ∩ Pol(π∗{1,2,...,n}),

aP∞ =
⋂
i≥1

aPi, AP∞ =
⋂
i≥1

APi,

aQ = Pol ({ρ+1, ρ=,01}) , AQ = Pol
({
ρ+1, ρ

∗
=,01

})
,

aW = Pol ({ρ+1, ρ=,012}) , AW = Pol
({
ρ+1, ρ

∗
=,012

})
.

Note that many clones from the class Φ were already found in [9]. Pre-
cisely, only clones aPn,APn for n ≥ 1, and clones aP∞,AP∞, aQ,AQ

are new.

To define the class Υ, for F ⊆ Π we put

Clone(F ) = Pol (F ∪ {ρ+1, ρW }) ,

Clone∗(F ) = Pol (F ∗ ∪ {ρ+1, ρ
∗
W }) .

Class Υ of clones. Suppose F ∈ Π̃, then

Clone(F ),Clone∗(F ) ∈ Υ.

There are no other clones in Υ.

Theorem 4.4. Suppose F1, F2 ∈ Π̃, then

Clone(F1) ⊆ Clone(F2)⇐⇒ F1 ⊇ F2.
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FIGURE 2
The lattice of the clones.

Corollary 1.2. Suppose F1, F2 ∈ Π̃ and F1 6= F2, then

Clone(F1) 6= Clone(F2).

Theorem 4.7. Θ∪Φ∪Υ is the set of all clonesM such thatM ⊆ Pol (ρ+1) .

It is hardly possible to draw a lattice that has continuum cardinality on a
picture, but we tried to do this in Figure 2. There we draw all clones from the
classes Θ and Φ, and also the following clones from the class Υ. For n ≥ 3

put
anπ0 = Clone(Πn ∩Π0), Anπ0 = Clone∗(Πn ∩Π0),

anπ∞ = Clone(Πn), Anπ∞ = Clone∗(Πn),

a∞π0 = Clone(Π0), A∞π0 = Clone∗(Π0),

a∞π∞ = Clone(Π), A∞π∞ = Clone∗(Π),
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a3π1 = Clone(π{1},{1}), A3π1 = Clone∗(π{1},{1}),

a3π2 = Clone(π{1},∅), A3π2 = Clone∗(π{1},∅).

Clones from the class Θ are located in the middle part of the picture. As
mentioned above these clones are self-dual with respect to the transposition
σ. Clones from the classes Φ and Υ are divided into two symmetric parts,
which are dual to each other with respect to the transposition σ. In this paper,
we usually refer to the clones from the left-hand part of the picture.

Two vertices M1 and M2 of the graph are joined by a solid line and M1

is located above M2 iff M2 ⊂ M1 and there does not exist a clone M ′ such
that M2 ⊂ M ′ ⊂ M1. Two vertices M1 and M2 are joined by a dotted line
and M1 is located above M2 iff M2 ⊂ M1 and the interval [M2,M1] is a
countable chain.

In some cases we use a dotted ellipse. Dotted ellipses in the left-hand part
of the picture represent the intervals [anπ∞,anπ0] for n ≥ 4, and the interval
[a∞π∞,a∞π0]. As it follows from Corollary 1.3, the interval [anπ∞,anπ0]

is finite for every n ≥ 4; but these intervals are too complicated to be drawn
on a picture. By Theorem 4.29 the interval [a∞π∞,a∞π0] has continuum
cardinality. In the Hasse diagram of this lattice for every clone from the
interval [anπ∞,anπ0] there exists a unique line to the lower layer. Also, for
every clone aPn, where n ∈ N, there exists a unique line from the interval
[a∞π∞,a∞π0] to this clone.

To make things more clear we draw the interval [a4π∞,a3π0] on a sepa-
rate picture (see Figure 3). There you can see the lattice of clones from the
class Υ that can be defined by predicates of arity 4. These are all clones from
Υ containing the clone a4π∞.

A finite set F ⊆ Π is placed next to every vertex of the graph in Figure 3.
This means that the clone Clone(F ) corresponds to this vertex. Note that the
set F is not a downset of Π and hence it does not satisfy the definition of the
class Υ. Nevertheless, it is easy to prove for the downset ↓ F generated by
F that Clone(F ) = Clone(↓ F ). This follows from Lemma 3.25 and the
Galois connection defined in Theorem 2.1.

If a clone is drawn in both figures, then we give in brackets the name of
this clone in Figure 2. Note that the lattice in Figure 3 is just the dual of the
lattice of downsets of the poset in Figure 1. We hope that now Figure 2 is
more clear.

So, pairwise inclusion of clones from Θ and Φ into each other is shown
schematically by a graph in Figure 2. The next three theorems describe the
inclusion of clones from Υ into clones from Φ and clones from Φ into clones
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π∅,∅,∅(a3π0)

π∅,∅,∅,∅(a4π0)
π{1},{1}(a3π1)

π{1},{1}, π∅,∅,∅,∅
π{1},∅(a3π2)

π{1},{1},{1}π{1},∅ π∅,∅,∅,∅π{1,2}(a3π∞)

π{1},∅, π{1},{1},{1}
π{1,2}, π∅,∅,∅,∅

π{1},{1},∅
π{1,2}, π{1},{1},{1}

π{1},∅,∅π{1,2}, π{1},{1},∅

π{1,2}, π{1},∅,∅
π{1,2},{1,2}

π{1,2},{1,2}, π{1},∅,∅

π{1,2},{1}

π{1},{2}π{1,2},∅

π{1},{2}, π{1,2},∅
π{1,2,3}

π{1,2,3}, π{1},{2}(a4π∞)

FIGURE 3
Clones from Υ containing a4π∞

from Υ.

Theorem 4.8. Suppose t ≥ 3, F ∈ Π̃, then Clone(F ) ⊂ atN iff either t = 3

or F 6⊆ Πt−1.

Theorem 4.12. Suppose F ∈ Π̃, then aPt ⊂ Clone(F ) iff F ⊆ Πt.

Theorem 4.13. Suppose F ∈ Π̃, then aP∞ ⊂ Clone(F ).
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1.3 Bases for clones
We say that a clone M ⊆ P3 is finitely generated if there exists a finite set
M0 ⊆M such thatM = [M0].A setM0 is called a basis forM ifM = [M0]

and for every M ′ ⊂M0 we have M 6= [M ′].

By + we denote the addition modulo 3.
We use the following notation for functions on E2: x, x ∨ y, x ∧ y, x⊕ y

are negation, disjunction, conjunction and addition modulo 2 respectively. To
reduce formulas in some cases ∧ is omitted. For n ≥ 2 we put

hn(x1, . . . , xn+1) =

n+1∨
i=1

x1 . . . xi−1xi+1 . . . xn+1,

h∗n is dual to hn with respect to the transposition on E2.
We want to partially extend some functions on E2 to functions on E3 in

a natural way. Let f ∈ Pn2 with f(c, c, . . . , c) = c for all c ∈ E2. Then
we define f on tuples (a1, . . . , an) with {a1, . . . , an} ⊆ {d, d+ 1} for some
d ∈ E3 by

f(a1, . . . , an) = f(a1 − d, . . . , an − d) + d.

For all other tuples we leave the function undefined. Obviously, if f is a
binary function on E2, then the extended f is a completely defined function
onE3. Moreover, it can be checked that the extended f is a self-dual function.
By right(x, y) we denote the extension of x∨ y, by left(x, y) we denote the
extension of x ∧ y. That is,

right(x, y) =


x, if x = y;

1, if {x, y} = {0, 1};
2, if {x, y} = {1, 2};
0, if {x, y} = {0, 2}.

left(x, y) =


x, if x = y;

0, if {x, y} = {0, 1};
1, if {x, y} = {1, 2};
2, if {x, y} = {0, 2}.

These two functions are used widely in the paper because all clones from the
classes Φ and Υ contain either right or left. Note that these functions are
not associative.

Suppose (a1, . . . , an) ∈ En3 , then by Two(a1, . . . , an) we denote the set
of all b ∈ E3 that occur in the tuple (a1, . . . , an) more than once. For exam-
ple, Two(0, 1, 2, 1, 0, 1) = {0, 1}.
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To define bases for clones we need to define several functions. In the right-
hand side of the following definitions, the functions on E2 mean the extended
functions.

r4(x1, x2, x3, x4) =

{
x1 ∨ x2 ∨ x3, if |{x1, x2, x3}| ≤ 2;

x4, if |{x1, x2, x3}| = 3.

r3(x1, x2, x3) =

{
x1 ∨ x2, if |{x1, x2, x3}| ≤ 2;

x1, if |{x1, x2, x3}| = 3.

g1(x1, x2, x3) =

{
x1 ∨ x2, if |{x1, x2, x3}| ≤ 2;

x1 ∧ x2, if |{x1, x2, x3}| = 3.

For n ≥ 2 we put

gn(x1, . . . , xn+2) =


x1 ∨ . . . ∨ xn+1, if |{x1, . . . , xn+2}| ≤ 2;

h∗n(x1, . . . , xn+1), if |{x1, . . . , xn+1}| = 2 and

|{x1, . . . , xn+1, xn+2}| = 3;

x1, otherwise.

sN (x1, x2, x3) =

{
x1 ∨ x2, if |{x1, x2, x3}| ≤ 2;

x3, if |{x1, x2, x3}| = 3.

ps(x, y, z) =

{
x, if |{x, y, z}| ≤ 2;

y, if |{x, y, z}| = 3.

ps0(x, y, z) =

{
x, if |{x, y, z}| ≤ 2;

x+ 1, if |{x, y, z}| = 3.

plus(x, y, z) =

{
x⊕ y ⊕ z, if |{x, y, z}| ≤ 2;

x, if |{x, y, z}| = 3.

plus0(x, y, z) =

{
x⊕ y ⊕ z, if |{x, y, z}| ≤ 2;

x+ 1, if |{x, y, z}| = 3.

m(x, y, z) =

{
h2(x, y, z), if |{x, y, z}| ≤ 2;

x, if |{x, y, z}| = 3.

m0(x, y, z) =

{
h2(x, y, z), if |{x, y, z}| ≤ 2;

x+ 1, if |{x, y, z}| = 3.
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f∞π (x1, x2, x3) =

{
x1 ∨ x2x3, if |{x1, x2, x3}| ≤ 2;

x1, if |{x1, x2, x3}| = 3.

For n ≥ 3 put

fnπ (x1, . . . , xn+1) =


x1, if Two(x1, . . . , xn+1) = {0, 1, 2};
a ∨ b, if Two(x1, . . . , xn+1) = {a, b};
a, if Two(x1, . . . , xn+1) = {a}.

f∞0 (x1, x2, x3) =

{
x1 ∨ x2x3, if |{x1, x2, x3}| ≤ 2;

x1, if |{x1, x2, x3}| = 3.

fn0 (x1, . . . , xn+1) =

{
h∗n(x1, . . . , xn+1), if |{x1, . . . , xn+1}| ≤ 2;

x1, if |{x1, . . . , xn+1}| = 3.

s0(x1, x2, x3, x4) =


x1 ∨ x2x3, if |{x1, x2, x3, x4}| ≤ 2;

x2, if |{x1, x2, x3, x4}| = 3 and x2 = x3;

x1, otherwise.

Theorem 4.16. The clones of the class Θ have the following bases:

S = [{x+ 1, right}] = [{x+ 1, left}],

S0 = [{2x+ 2y, right}] = [{2x+ 2y, left}],

SL = [{2x+ 2y, x+ 1}] = [{2x+ 2y + 1}], 1S = [{x+ 1}],

SL0 = [{2x+ 2y}], T = [{2x+ 2y, ps}],

C = [{plus, right}] = [{plus, left}],

D = [{plus,m0}] = [{plus0,m}] = [{plus,m, ps0}],

M = [{right, left}], DM = [{m, ps0}] = [{m0, ps}],

DN = [{m0}], TD = [{m, plus}], TM = [{ps,m}],

TN = [{m}], L2 = [{plus, ps0}] = [{plus0}],

TL2 = [{plus}], C2 = [{ps0}], TC2 = [{ps}], J3 = [{x}].
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As it follows from the definition of the classes Υ and Φ, the clones in the
left part of Figure 2 are dual with respect to the transposition σ to the clones
in the right part of the figure. That is why we give bases only for clones from
the left part.

Theorem 4.17. The clones of the class Φ have the following bases:

a2 = [{f∞0 ,m}], a2M = [{ps, right,m}], a2N = [{m, right}].

For n ≥ 3

an = [{f∞0 , fnπ }] = [{f∞0 , fn0 }],

anM = [{fnπ , ps}] = [{fn0 }], anN = [{fnπ , sN}],

a∞ = [{f∞0 }], a∞M = [{f∞π , ps}], a∞N = [{f∞π , sN}].

For n ≥ 1

aP = [{right, ps}], aPN = [{sN}], aPn = [{gn}],

aP∞ = [{r3}], aQ = [{r4}], aW = [{right}].

Theorem 4.18. For n ≥ 3 and m ≥ 1 the clones of the class Υ have the
following bases:

a∞π∞ = [{f∞π }], anπ∞ = [{fnπ }],

a∞π0 = [{s0}], anπ0 = [{s0, f
n
π }],

Clone(Πm) = [{gm, f∞π }], Clone(Π1 ∩Πn) = [{g1, f
n
π }].

To define bases for all clones from the class Υ we will need the following
notions. As mentioned before two predicates ρ1 and ρ2 from Π are equiva-
lent if ρ1 . ρ2 and ρ2 . ρ1. Thus, all predicates from Π are divided into
equivalence classes. The set of all equivalence classes we denote by EΠ. By
ρ̂ we denote the equivalence class that contains ρ ∈ Π. Then, the quasiorder
. generates a partial order on the set EΠ. We write ρ̂1 < ρ̂2, if ρ̂1 . ρ̂2 and
ρ̂1 6= ρ̂2.

Suppose F ∈ Π̃. Put

Bound(F ) := {ρ̂ ∈ EΠ | ρ̂ 6⊆ F,∀σ̂ ∈ EΠ(σ̂ < ρ̂ =⇒ σ̂ ⊆ F )}.

A downset F can be regarded as a subset of EΠ, then Bound(F ) is the set of
all minimal elements of the complement of F in EΠ.

A set of pairwise incomparable elements is called an antichain. LetBΠ be
the set of all antichains of EΠ excluding the one that consists of the bottom
element π̂{∅,∅,∅} only.
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Theorem 4.19. Bound : Π̃→ BΠ is a bijective mapping.

It follows from this theorem and Theorem 4.4 that if we find an infinite
antichain in EΠ, then we prove that Υ contains a continuum of clones. As an
example, the following set can be considered

{π̂A1,A2,...,Am
| m ≥ 2,∀i Ai = {1, 2, . . . ,m} \ {i}}.

Suppose F ∈ Π̃, ρ̂ ∈ Bound(F ). Put

Fρ̂ = F ∪
⋃

δ̂∈Bound(F )\{ρ̂}

δ̂,

F0 = F ∪
⋃

δ̂∈Bound(F )

δ̂.

Theorem 4.20. SupposeM ⊂ Clone(F ), F ∈ Π̃\{Π,Π0,Π1,Π2,Π3, . . .},
and g : Bound(F ) → M is a bijective mapping such that for every ρ̂ ∈
Bound(F ) we have

g(ρ̂) ∈ Clone(Fρ̂) \ Clone(F0).

Then M is a basis for Clone(F ).

Corollary 4.21. Suppose M ∈ Θ ∪ Φ ∪Υ, then M has a basis.

Corollary 4.22. Suppose F ∈ Π̃, then Clone(F ) is finitely generated iff
Bound(F ) is finite.

Corollary 4.23. Suppose F ∈ Π̃, |F | <∞, then Clone(F ) is finitely gener-
ated.

1.4 Some properties of clones from Θ, Φ, and Υ

The relation degree d(A) of a clone A ⊆ P3 is the smallest h ∈ N0 such that
A = Pol(S) for some S ⊆ Rh3 , that is,

d(A) = min{h | ∃Q ⊆ Rh3 : Pol(Q) = A}.

Put d(A) =∞ if A 6= Pol(Q) for every finite set Q ⊆ R3.
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Theorem 4.25. Suppose M ∈ Θ ∪ Φ, then

d(M) =



2, if M ∈ {S,S0,T,C,M,D,DM,DN,TD,TM,

TN,1S,J3};
3, if M ∈ {SL,SL0,L2,TL2,C2,TC2,aP,aPN,

aP1,aQ,aW,AP,APN,AP1,AQ,AW};
n, if n ≥ 2 and M ∈ {an,anM,anN,An,AnM,AnN}
n+ 1, if n ≥ 2 and M ∈ {aPn,APn};
∞, if M ∈ {a∞,a∞M,a∞N,aP∞,A∞,A∞M,

A∞N,AP∞};

Theorem 4.26. Suppose F ∈ Π̃, F 6= {π∅,∅,∅}, then

d(Clone(F )) =

{
max{m+ n | Πm

n ∩ F 6= ∅}, if |F | <∞;

∞, otherwise.

d(Clone({π∅,∅,∅})) = 2.

It follows from Theorem 4.25 and Theorem 4.26 that our description of
clones is optimal. That is, these clones cannot be defined by predicates of
smaller arities.

Further, let L3 be the set of all clones in Θ ∪ Φ ∪Υ. For F ∈ L3 we put

L↑3(F ) := {F ′ ∈ L3 | F ⊆ F ′},

L↓3(F ) := {F ′ ∈ L3 | F ′ ⊆ F}.

That is, L↑3(F ) is the principal filter generated by F , and L↓3(F ) is the princi-
pal ideal generated by F .

Theorem 4.30. Suppose M ∈ Θ ∪ Φ, then

|L↓3(M)|



= ℵ0, if M ∈ {aP,aPN,aP1,aP2,aP3, . . . ,

AP,APN,AP1,AP2,AP3, . . .};
= 2ℵ0 , if M ∈ {S,S0,C,M,a∞,a∞M,a∞N,

A∞,A∞M,A∞N}
or M ∈

⋃
n≥2

{an,anM,anN,An,AnM,AnN};

<∞, otherwise.
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Theorem 4.29. Suppose F ∈ Π̃, then

|L↓3(Clone(F ))| =

{
2ℵ0 , if F 6= Π;

5, if F = Π.

Theorem 4.38. Suppose M ∈ Θ ∪ Φ, then

|L↑3(M)|



= ℵ0, if M ∈ {C2,TC2,a∞,a∞M,a∞N,aP,aPN,

A∞,A∞M,A∞N,AP,APN}
or M ∈

⋃
n≥1

{aPn,APn};

= 2ℵ0 , if M ∈ {J3,aP∞,aQ,aW,AP∞,AQ,AW, };
<∞, otherwise.

Let ΠW be the set of all πA1,...,Am ∈ Π such thatAi = A1∪A2∪. . .∪Am
for some i ∈ {1, 2, . . . ,m}. In other words, if πA1,...,Am

∈ Πm
n ∩ ΠW , then

there exists i ∈ {1, 2, . . . ,m} such that Ai = {1, 2, . . . , n}.

Theorem 4.37. Suppose F ∈ Π̃, then

|L↑3(Clone(F ))|


<∞, if |F | <∞;

= ℵ0, if |F | =∞, F ⊆ (Πn ∪ΠW ) for some n ∈ N;

= 2ℵ0 , otherwise.

Corollary 1.3. |L↑3(anπ∞)| <∞ for every n ≥ 3.

It follows from Theorem 4.38 and Corollary 1.3 that |L↑3(aPm)| = ℵ0

for every m ≥ 1, |L↑3(anπ∞)| < ∞ for every n ≥ 3. Roughly speaking,
this means that a continuum of clones is located near the vertex a∞π∞ in
Figure 2.

2 NECESSARY NOTIONS

2.1 Closure operator for predicates and Galois connection
By σ=

k we denote the predicate from Rk given by

σ=
k (x, y) = 1⇐⇒ x = y.

By false we denote the predicate of arity 0 that takes on value 0, by true we
denote the predicate of arity 0 that takes on value 1.

20



Let us give a short definition of the closure operator [ ] on the set Rk. The
reader can find a rigorous definition in the monograph [7]. Suppose S ⊆ Rk,
then by [S] we denote the set of all predicates ρ ∈ Rk that can be presented
by a formula as follows

ρ(x1, . . . , xn) = ∃y1 . . . ∃yl ρ1(z1,1, . . . , z1,n1) ∧ . . . ∧ ρs(zs,1, . . . , zs,ns),

where l ≥ 0, ρ1, . . . , ρs ∈ S ∪ {false, σ=
k }, zi,j ∈ {x1, . . . , xn, y1, . . . , yl}.

That is a formula over the set S∪{false, σ=
k } from first order predicate logic,

which only uses the connective ∧ and existential quantification. The closed
subsets S ⊆ Rk with respect to the closure [ ] are called relational clones.

Theorem 2.1. [1, 2, 7] Let L(Pk) be the set of all clones of Pk, L(Rk) be
the set of all relational clones of Rk. Then the mappings

Inv : L(Pk) −→ L(Rk),

Pol : L(Rk) −→ L(Pk)

are mutually inverse bijective mappings, which reverse the partial order ⊆,
i. e., it holds

∀A,B ∈ L(Pk) : A ⊆ B ⇒ Inv(B) ⊆ Inv(A),

∀S, T ∈ L(Rk) : S ⊆ T ⇒ Pol(T ) ⊆ Pol(S).

So we have a one-to-one correspondence (which is a Galois connection)
between clones and relational clones.

2.2 Auxiliary definitions
By ar(ρ) we denote the arity of a predicate ρ. A predicate is called trivial
if it takes value 1 on every tuple. We say that two predicates ρ1 and ρ2 are
equivalent with respect to the set of predicates S if ρ2 ∈ [S ∪ {ρ1}] and
ρ1 ∈ [S ∪ {ρ2}].

We say that the i-th variable of a predicate ρ ∈ Rnk is dummy if for every
a1, a2, . . . , an, b ∈ Ek we have

ρ(a1, . . . , ai−1, ai, ai+1, . . . , an) = ρ(a1, . . . , ai−1, b, ai+1, . . . , an).

Suppose ρ ∈ Rnk , i ≤ n, then we put VarValues(ρ, i) = {α(i) | α ∈ ρ}.
We say that ρ′ ∈ Rn3 is obtained from ρ ∈ Rn3 by a permutation of vari-

ables if there exists a permutation σ : {1, 2, . . . , n} → {1, 2, . . . , n} such
that

ρ′(x1, x2, . . . , xn) = ρ(xσ(1), xσ(2), . . . , xσ(n)).
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We say that ρ′ ∈ Rn3 is obtained from ρ ∈ Rn3 by shifting of variables if
there exist a1, a2, . . . , an ∈ E3 such that

ρ′(x1, x2, . . . , xn) = ρ(x1 + a1, x2 + a2, . . . , xn + an).

Lemma 2.2. Suppose ρ′ ∈ Rn3 is obtained from ρ ∈ Rn3 by shifting of vari-
ables, then predicates ρ and ρ′ are equivalent with respect to {ρ+1}.

Proof. Suppose ρ′(x1, x2, . . . , xn) = ρ(x1 + a1, x2 + a2, . . . , xn + an). Put
σi(x, y) = σ=

k (x, y) if ai = 0; σi(x, y) = ρ+1(x, y) if ai = 1; σi(x, y) =

ρ+1(y, x) if ai = 2. Then,

ρ′(x1, . . . , xn) = ∃y1 . . . ∃yn ρ(y1, . . . , yn) ∧
∧
i

σi(xi, yi).

Suppose ρ ∈ R3, then by Shift(ρ) we denote the set of all predicates that
can be obtained from ρ by shifting and permutation of variables. For S ⊆ R3

put
Shift(S) =

⋃
ρ∈S

Shift(ρ).

Using Lemma 2.2, we get Shift(S) ⊆ [S ∪ {ρ+1}] for every S.
Suppose S ⊆ Rk, then by And(S) we denote the set of all ρ ∈ Rk that

can be presented by a formula of the following form:

ρ(x1, . . . , xn) = ρ1(z1,1, . . . , z1,n1) ∧ . . . ∧ ρs(zs,1, . . . , zs,ns),

where s ≥ 0, ρ1, . . . , ρs ∈ S, zi,j ∈ {x1, . . . , xn}, zi,j 6= zi,l for all
i, j, l, j 6= l. Here we suppose that ρ is a constant 1 for s = 0.

Suppose ρ ∈ Rnk , 1 ≤ i ≤ n. By Strike(ρ, i) we denote the predicate
σ ∈ Rn−1

k such that

σ(x1, x2, . . . , xn−1) = ∃y ρ(x1, . . . , xi−1, y, xi, . . . , xn−1).

If ρ′ = Strike(ρ, i), then we say that ρ′ is obtained from ρ by striking the i-th
row. Suppose ρ ∈ Rk, then by Strike(ρ) we denote the set of all ρ′ that can
be presented by a formula of the following form:

ρ′(x1, x2, . . . , xn) = ∃y1∃y2 . . . ∃yl ρ(z1, z2, . . . , zm)

where l ≥ 0, z1, z2, . . . , zm ∈ {x1, . . . , xn, y1, . . . , yl}, zi 6= zj for i 6= j.

For S ⊆ R3 we put
Strike(S) =

⋃
ρ∈S

Strike(ρ).
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Lemma 2.3. Suppose ρ ∈ Rk, c ∈ Ek, and

ρ′(x1, . . . , xi−1, xi+1, . . . , xn) = ρ(x1, . . . , xi−1, c, xi+1, . . . , xn).

Then ρ′ ∈ [{ρ, {c}}].

Proof. ρ′(x1, . . . , xi−1, xi+1, . . . , xn) = ∃xi ρ(x1, . . . , xn) ∧ (xi = c).

Suppose α is a word. Then by |α| we denote the length of α. Suppose
|α| ≥ l, then we put

[l(α) = α(|α| − l + 1) . . . α(|α| − 1)α(|α|),

]l(α) = α(1)α(2) . . . α(l).

Suppose s ∈ N, then we put αs = αα . . . α︸ ︷︷ ︸
s

.

Suppose ρ1, ρ2 ∈ Rnk ; we say that ρ1 ≤ ρ2 if for every a1, . . . , an ∈ Ek

ρ1(a1, . . . , an) ≤ ρ2(a1, . . . , an);

we say that ρ1 < ρ2 if ρ1 ≤ ρ2 and ρ1 6= ρ2.

2.3 Essential predicates
A predicate ρ of arity n is called essential if there do not exist predicates
ρ1, ρ2, . . . , ρl such that ar(ρi) < n for every i ∈ {1, 2, . . . , l} and ρ ∈
And({ρ1, ρ2, . . . , ρl}). We put by definition that false and true are essen-
tial predicates. So, ρ ∈ Rk is called essential if ρ cannot be presented as a
conjunction of predicates with arity less than the arity of ρ. The set of all
essential predicates of arity n is denoted by R̃nk . Let

R̃k =
⋃
n≥0

R̃nk .

A tuple (a1, a2, . . . , an) is called essential for a predicate ρ ∈ Rnk if

ρ(a1, a2, . . . , an) = 0

and there exist b1, b2, . . . , bn ∈ Ek such that for every i ∈ {1, 2, . . . , n}

ρ(a1, . . . , ai−1, bi, ai+1, . . . , an) = 1.

Let us define the predicate ρ̃ for every predicate ρ ∈ Rnk , where n ≥ 1.

Put σi = Strike(ρ, i). By ρ̃ we denote the following predicate:

ρ̃(x1, . . . , xn) = σ1(x2, . . . , xn) ∧ . . . ∧ σn(x1, . . . , xn−1).
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Lemma 2.4. Suppose ρ ∈ Rnk , where n ≥ 1. Then the following conditions
are equivalent:

1. ρ is an essential predicate;

2. ρ 6= ρ̃;

3. there exists an essential tuple for ρ.

Proof. Let σi = Strike(ρ, i). We have

ρ̃(x1, . . . , xn) = σ1(x2, . . . , xn) ∧ . . . ∧ σn(x1, . . . , xn−1).

Let us prove that the first condition implies the second condition, the second
implies the third and the third implies the first.

Suppose ρ is essential, then it follows from the definition that ρ 6= ρ̃.

Suppose ρ 6= ρ̃. It can be easily checked that ρ ≤ ρ̃. Then there exists
(a1, . . . , an) such that ρ̃(a1, . . . , an) = 1, ρ(a1, . . . , an) = 0. By the def-
inition of the predicates σ1, . . . , σn, for every i there exists bi ∈ Ek such
that

ρ(a1, . . . , ai−1, bi, ai+1, . . . , an) = 1.

Hence, the tuple (a1, . . . , an) is an essential tuple for ρ.
Suppose (a1, . . . , an) is an essential tuple for ρ. Assume that ρ is not es-

sential. Then there exist ρ1, . . . , ρl ∈ Rk such that ρ ∈ And({ρ1, . . . , ρl})
and ar(ρj) < n for every j. Without loss of generality it can be assumed that

ρ(x1, . . . , xn) = ρ1(x1, . . . , xn) ∧ . . . ∧ ρl(x1, . . . , xn)

and every predicate ρj has at least one dummy variable. Since we have
ρ(a1, . . . , an) = 0, there exist j ∈ {1, 2, . . . , l} and i ∈ {1, 2, . . . , n}
such that ρj(a1, . . . , an) = 0 and the i-th variable of ρj is dummy. Hence,
there is no bi such that ρj(a1, . . . , ai−1, bi, ai+1, . . . , an) = 1. Therefore,
(a1, a2, . . . , an) is not an essential tuple. This contradiction completes the
proof.

Lemma 2.5. Suppose ρ ∈ Rk, then ρ ∈ And(Strike(ρ) ∩ R̃k).

Proof. The proof is by induction on the arity of ρ. If ar(ρ) = 0, then ρ is
essential and the proof is trivial. If ρ is an essential predicate, then the proof
is trivial. Suppose ρ is not essential, σi = Strike(ρ, i). Then by Lemma 2.4

ρ(x1, x2, . . . , xn) = σ1(x2, . . . , xn) ∧ . . . ∧ σn(x1, . . . , xn−1).
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By the inductive assumption, we have σi ∈ And(Strike(σi) ∩ R̃k). Hence,

ρ ∈ And

(
n⋃
i=1

And
(

Strike(σi) ∩ R̃k
))
⊆ And

(
n⋃
i=1

Strike(σi) ∩ R̃k

)
.

Since Strike(σi) ⊂ Strike(ρ) for every i, we have ρ ∈ And(Strike(ρ)∩R̃k).

Suppose S ⊆ Rk, n ≥ 1. A predicate ρ ∈ Rnk is called maximal with
respect to S if there exists an essential word (tuple) α for ρ such that the
following condition holds:

∀σ ∈ Rnk (σ > ρ ∧ σ(α) = 0)⇒ σ /∈ [{ρ} ∪ S].

Thus, ρ is a maximal predicate among all predicates σ ∈ [{ρ} ∪ S] ∩ Rnk
such that σ(α) = 0. The word α is called a key word for ρ. By definition we
put that predicates true and false are maximal with respect to S for every
S ⊆ Rk.

Lemma 2.6. Suppose ρ ∈ Rk, S ⊆ Rk, then there exists W ⊆ [{ρ} ∪ S]

such that

1. every σ ∈W is a maximal predicate with respect to S;

2. ar(σ) ≤ ar(ρ) for every σ ∈W ;

3. ρ ∈ And(W ).

Proof. The proof is by induction on the arity of ρ. Let n = ar(ρ). If n = 0,

then ρ is maximal with respect to S and the proof is trivial.
Let α1, α2, . . . , αl be all essential words for ρ. For every i ∈ {1, 2, . . . , l}

let δi be a maximal predicate such that δi ∈ [{ρ} ∪ S] ∩ Rnk , δi ≥ ρ, and
δi(αi) = 0. Obviously, δi exists. Let σi = Strike(ρ, i). It can be easily
checked that we have the following equation

ρ(x1, . . . , xn) = δ1(x1, . . . , xn) ∧ . . . ∧ δl(x1, . . . , xn)∧
σ1(x2, . . . , xn) ∧ . . . ∧ σn(x1, . . . , xn−1).

By the inductive assumption σj ∈ And({ρj,1, . . . , ρj,pj}), where ρj,i is
a maximal predicate with respect to S, ρj,i ∈ [{σj} ∪ S] ⊆ [{ρ} ∪ S] and
ar(ρj,i) ≤ n− 1. Hence

ρ ∈ And({δ1, . . . , δl, ρ1,1, . . . , ρ1,p1 , . . . , ρn,1, . . . , ρn,pn}).

This completes the proof.
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2.4 Essential closure
A set S ⊆ R̃k is called essentially closed if the following conditions hold:

1. σ=
k , false ∈ S;

2. If ρ is obtained from ρ1 ∈ S by a permutation of variables, then ρ ∈ S;

3. If ρ ∈ Strike(S) ∩ R̃k, then ρ ∈ S;

4. If ρ1 ∈ S and ρ(x1, x2, . . . , xn) = ρ1(x1, x1, x2, . . . , xn), then either
ρ /∈ R̃k or ρ ∈ S;

5. If ρ1 ∈ S and ρ(x1, x2, . . . , xn−1) = ∃x ρ1(x, x, x1, x2, . . . , xn−1),

then either ρ /∈ R̃k or ρ ∈ S;

6. If ρ1, ρ2 ∈ S, m ≤ n, and

ρ(x1, x2, . . . , xn) = ρ1(x1, x2, . . . , xn) ∧ ρ2(x1, x2, . . . , xm),

then either ρ /∈ R̃k or ρ ∈ S;

7. If ρ1, ρ2 ∈ S, ar(ρ2) = 1, and

ρ(x1, x2, . . . , xn) = ∃x ρ1(x, x1, x2, . . . , xn) ∧ ρ2(x),

then either ρ /∈ R̃k or ρ ∈ S;

8. If 2 ≤ l ≤ k, ρ1, . . . , ρl ∈ S, ar(ρi) = ni + 1 ≥ 2 for every i ∈
{1, 2, . . . , l},

ρ(x1,1, . . . , x1,n1 , . . . , xl,1, . . . , xl,nl
) =

∃x ρ1(x, x1,1, . . . , x1,n1
) ∧ . . . ∧ ρl(x, xl,1, . . . , xl,nl

),

where all variables are different; then either ρ /∈ R̃k or ρ ∈ S.

Lemma 2.7. [Q ∩ R̃k] = Q for every relational clone Q ⊆ Rk.

Proof. The inclusion [Q ∩ R̃k] ⊆ Q is trivial. Let us prove the inclusion
[Q ∩ R̃k] ⊇ Q. Suppose ρ ∈ Q, then by Lemma 2.5, it follows that ρ ∈
And(Strike(ρ)∩ R̃k). Since Strike(ρ) ⊆ [{ρ}] and And(T ) ⊆ [T ] for every
T ⊆ Rk, we get ρ ∈ [[{ρ}] ∩ R̃k] ⊆ [Q ∩ R̃k]. This concludes the proof.

The following theorem is proved at the end of this section.
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Theorem 2.8. A set S ⊆ R̃k is essentially closed iff [S] ∩ R̃k = S.

It follows from Lemma 2.7 that an arbitrary relational clone Q can be
uniquely determined by the set Q ∩ R̃k. Moreover, it follows from Theo-
rem 2.8 that Q ∩ R̃k is an essentially closed set of predicates. So, we have a
one-to-one correspondence between relational clones and essentially closed
sets of essential predicates. Thus, to describe all clones in three-valued logic,
it is sufficient to describe all essentially closed sets of essential predicates.

Let us consider a simple example. Suppose ρ ∈ R2
k defines a linear or-

der on the set Ek. Let ρ′(x, y) = ρ(y, x). It is easy to check that the set
{σ=

k , false, true, ρ, ρ
′} is essentially closed. Hence, Pol(ρ) is a maximal (or

precomplete) clone in Pk. Note that we prove this without using functions at
all.

The following lemmas will be used in the proof of Theorem 2.8.

Lemma 2.9. Suppose ρ, ρ1, . . . , ρl ∈ Rk, ar(ρi) = ni + 1 ≥ 2, l > k, and

ρ(x1,1, . . . , x1,n1
, x2,1, . . . , x2,n2

, . . . , xl,1, . . . , xl,nl
) =

∃y ρ1(y, x1,1, . . . , x1,n1) ∧ . . . ∧ ρl(y, xl,1, . . . , xl,nl
).

Then ρ is not an essential predicate.

Proof. Assume the converse. By Lemma 2.4, there exists an essential tuple γ
for ρ. Suppose γ = α1α2 . . . αl where αi ∈ Eni

k for every i ∈ {1, 2, . . . ,m}.
Put

Ci = {c ∈ Ek | ρi(cαi) = 1}.

Since γ is an essential tuple, we have

C1 ∩ C2 ∩ . . . ∩ Cl = ∅,

Dj :=
⋂
i 6=j

Ci 6= ∅.

Hence, Di ∩Dj = ∅ for every i, j, i 6= j. Since Di ⊆ Ek for every i, we
have l ≤ k. This concludes the proof.

Lemma 2.10. Suppose S is an essentially closed set of predicates, ρ0 ∈ S,
ρ ∈ Strike(ρ0). Then ρ ∈ And(S).

Proof. By Lemma 2.5 and using item 3 of the definition, we obtain

ρ ∈ And(Strike(ρ) ∩ R̃k) ⊆ And(Strike(ρ0) ∩ R̃k) ⊆ And(S).
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Lemma 2.11. Suppose ρ ∈ Rnk , σi = Strike(ρ, i), predicates ρ and σ1 are
not essential. Then

ρ(x1, . . . , xn) = σ2(x1, x3, . . . , xn) ∧ . . . ∧ σn(x1, . . . , xn−1).

Proof. Let σ1,i = Strike(σ1, i− 1). Using Lemma 2.4 for ρ and σ1 we get

ρ(x1, . . . , xn) =

σ1(x2, . . . , xn) ∧ σ2(x1, x3, . . . , xn) ∧ . . . ∧ σn(x1, . . . , xn−1) =
n∧
i=2

(σi(x1, . . . , xi−1, xi+1, . . . , xn) ∧ σ1,i(x2, . . . , xi−1, xi+1, . . . , xn)).

Hence the following equation completes the proof.

σi(x1, x2, . . . , xn−1) ∧ σ1,i(x2, . . . , xn−1) = σi(x1, x2, . . . , xn−1).

Lemma 2.12. Suppose S is an essentially closed set of predicates, ρ0 ∈
And(S), and

ρ(x1, x2, . . . , xn) = ρ0(x1, x1, x2, . . . , xn).

Then ρ ∈ And(S).

Proof. The proof is by induction on ar(ρ0). By the condition, ρ0 can be pre-
sented as a conjunction of predicates δ1, . . . , δs ∈ S. Hence, we just need
to prove that if we identify two variables in δi we obtain a predicate from
And(S). Therefore, without loss of generality we can assume that ρ0 ∈ S.

If ρ is essential, then the proof follows from item 4 of the definition of an
essentially closed set. Suppose ρ is not essential. If ar(ρ) = 1, then obviously
ρ ∈ And(S). Suppose ar(ρ) ≥ 2. By Lemma 2.4 we have ρ = ρ̃. Let σj =

Strike(ρ, j). Let us show that σj ∈ And(S) for every j ∈ {2, 3, . . . , ar(ρ)}.
Let εj = Strike(ρ0, j + 1). By Lemma 2.10 we have εj ∈ And(S). By the
inductive assumption we get σj ∈ And(S) for every j ∈ {2, 3, . . . , ar(ρ)}.

Assume that σ1 is essential. It follows from item 5 of the definition that
σ1 ∈ S. Hence ρ ∈ And({σ1, σ2, . . . , σar(ρ)}) ⊆ And(S).

Suppose σ1 is not essential. Then using Lemma 2.11 we obtain that ρ ∈
And({σ2, σ3, . . . , σar(ρ)}) ⊆ And(S). This completes the proof.
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Suppose S ⊆ R̃k. By AF(S) we denote the set of all formulas of the
following form:

ρ1(z1,1, . . . , z1,n1
) ∧ . . . ∧ ρs(zs,1, . . . , zs,ns

),

where ρ1, . . . , ρs ∈ S, zi,j 6= zi,l for all i, j, l, j 6= l.

By Seq we denote the set of all infinite sequences (a0, a1, a2, . . .) such
that ai ∈ N0 for every i ∈ N0, and there exists j ∈ N0 such that ai = 0

for every i ≥ j. Let us define a mapping ϕ : AF(S) → Seq . Put ϕ(Φ) =

(a0, a1, a2, . . .), where ai is the number of predicates of arity i in the formula
Φ. Let us define a linear order on the set Seq . We say that (a0, a1, a2, . . .) <

(b0, b1, b2, . . .) if there exists m ∈ N0 such that am < bm and ai = bi for
every i > m.

Lemma 2.13. Suppose ∅ 6= W ⊆ Seq . Then there exists a minimal element
in W.

Proof. Consider γ ∈ W. Suppose that γ(i) = 0 for every i > n. Let
Wn = {α ∈W | ∀i > n (α(i) = 0)}. For i ∈ {0, 1, 2, . . . , n} we put

bi = min{α(i) | α ∈Wi},

Wi−1 = {α ∈Wi | α(i) = bi}.

Obviously, Wi is not empty for every i ∈ {0, 1, 2, . . . , n}. Therefore, the
sequence (b0, b1, b2, . . . , bn, 0, 0, 0, . . .) is a minimal element in W.

Suppose S ⊆ R̃k, σ ∈ And(S)∩Rnk . By AF(σ, S, x1, . . . , xn) we denote
the set of all formulas Φ ∈ AF(S) such that σ(x1, . . . , xn) = Φ(x1, . . . , xn).

Lemma 2.14. Suppose S ⊆ R̃k is essentially closed, ρ0 ∈ And(S), and

ρ(x1, . . . , xn) = ∃x ρ0(x, x1, . . . , xn).

Then ρ ∈ And(S).

Proof. Assume the converse. Let Ψ0 ∈ AF(S) be a formula with the minimal
value of ϕ(Ψ) such that ∃x Ψ0 realizes a predicate ρ /∈ And(S). Let us
rename some variables in Ψ0 such that every variable except x in the obtained
formula occurs just once. Note that we remain all occurrences of the variable
x in Ψ0. We denote the obtained formula by Ψ. Suppose ∃x Ψ realizes a
predicate ρ′. If ρ′ ∈ And(S), then using Lemma 2.12 we obtain that ρ ∈
And(S), which contradicts the assumption.
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Assume that ρ′ /∈ And(S). Obviously ϕ(Ψ) = ϕ(Ψ0). Let

Ψ = Ξ1 ∧ Ξ2 ∧ . . . ∧ Ξr.

Without loss of generality it can be assumed that there exists m ≤ r such that
Ξi contains x iff i ≤ m. It can be assumed that Ξi = ρi(x, xi,1, . . . , xi,ni)

for every i ≤ m.
Assume that m < r. Let Ψ1 = Ξ1 ∧ . . . ∧ Ξm. Let ∃x Ψ1 realize a pred-

icate δ. Obviously, ϕ(Ψ1) < ϕ(Ψ). By the assumption about the minimality
of ϕ(Ψ) we get δ ∈ And(S). Hence, ρ′ ∈ And(S), which contradicts the
assumption.

Thus, we can assume that m = r.

We have three cases. First case, m = 1. By Lemma 2.10 the formula
∃x Ξ1 realizes a predicate from And(S). Hence ρ′ ∈ And(S).

Second case, ar(ρi) = 1 for some i ∈ {1, 2, . . . ,m} and m > 2. Without
loss of generality it can be assumed that i = 1. For j ∈ {2, 3, . . . ,m} we put

ρ′j(x, xj,1, . . . , xj,nj
) = ρ1(x) ∧ ρj(x, xj,1, . . . , xj,nj

).

Assume that ρ′j is essential for every j. Then it follows from item 6 of the
definition that ρ′j ∈ S for every j. We put Ξ′j = ρ′j(x, xj,1, . . . , xj,nj

). Let

Ψ2 = Ξ′2 ∧ Ξ′3 ∧ . . . ∧ Ξ′m.

Obviously ∃x Ψ2 realizes the predicate ρ′ and ϕ(Ψ2) < ϕ(Ψ). This contra-
dicts the assumption about the minimality of ϕ(Ψ).

Assume that ρ′j is not essential for some j ∈ {2, 3, . . . ,m}. Let σi =

Strike(ρ′j , i). By the assumption about the minimality of ϕ(Ψ) we have σi ∈
And(S) for every i ∈ {1, 2, . . . , nj + 1}. Let for i ∈ {1, 2, . . . , nj}

Θ0 ∈ AF(σ1, S, xj,1, . . . , xj,nj
),

Θi ∈ AF(σi+1, S, x, xj,1, . . . , xj,i−1, xj,i+1, . . . , xj,nj ).

By Lemma 2.4, the formula Θ0 ∧ Θ1 ∧ . . . ∧ Θnj
realizes ρ′j . Let Ψ3 be

obtained from Ψ by replacing Ξj by Θ0 ∧Θ1 ∧ . . .∧Θnj . Obviously ∃x Ψ3

realizes the predicate ρ′ and ϕ(Ψ3) < ϕ(Ψ). This contradicts the assumption
about the minimality of ϕ(Ψ).

Third case, m = 2 or ar(ρi) > 1 for every i ∈ {1, 2, . . . ,m}. If ρ′ is es-
sential then using Lemma 2.9 we obtainm ≤ k.Hence, it follows from item 7
and item 8 of the definition that ρ′ ∈ S. This contradicts the assumption.
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Assume that ρ′ is not essential. Let σi = Strike(ρ′, i). Let us prove
that σi ∈ And(S) for every i. Without loss of generality it can be assumed
that i = 1. By Lemma 2.10 the formula ∃x1,1 Ξ1 realizes a predicate from
And(S). Denote this predicate by σ′. Let Ω ∈ AF(σ′, S, x, x1,2, . . . , x1,n1

).

Then we have

∃x1,1 ∃x Ξ1 ∧ Ξ2 ∧ . . . ∧ Ξm =

∃x (∃x1,1 Ξ1) ∧ Ξ2 ∧ . . . ∧ Ξm = ∃x Ω ∧ Ξ2 ∧ . . . ∧ Ξm.

Let Ψ4 = Ω ∧ Ξ2 ∧ . . . ∧ Ξm. It can be easily checked that ϕ(Ψ4) < ϕ(Ψ)

and ∃x Ψ4 realizes the predicate σ1. Because of the minimality of ϕ(Ψ) we
get σ1 ∈ And(S).

Hence, σi ∈ And(S) for every i. By Lemma 2.4 we get ρ′ ∈ And(S).

This contradiction completes the proof.

Lemma 2.15. Suppose S is an essentially closed set, then And(S) is a closed
set of predicates.

Proof. This lemma can be easily proved by combining the definition of es-
sentially closed set, Lemma 2.12 and Lemma 2.14.

Proof of Theorem 2.8. If [S] ∩ R̃k = S then it is easy to show that S is
essentially closed.

Suppose S is an essentially closed set of predicates. By Lemma 2.15 we
obtain that [And(S)] = And(S). We have

And(S) ⊆ [S] ⊆ [And(S)] = And(S).

Therefore, And(S) = [S]. Now we must only prove that And(S) ∩ R̃k ⊆ S.
Consider ρ ∈ And(S)∩ R̃k. Suppose (a1, . . . , an) is an essential tuple for

ρ, ρ is presented as a conjunction of predicates ρ0, ρ1, . . . , ρl ∈ S. At least
one of these predicates takes on value 0 on the tuple (a1, . . . , an). Hence,
this tuple is essential for this predicate. Without loss of generality it can be
assumed that (a1, . . . , an) is an essential tuple for ρ0. Therefore,

ρ(x1, x2, . . . , xn) =

ρ0(x1, x2, . . . , xn) ∧ ρ1(x1,1, . . . , x1,n1
) ∧ . . . ∧ ρl(xl,1, . . . , xl,nl

).
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For i ∈ {1, . . . , l} we put

ρ′0(x1, x2, . . . , xn) = ρ0(x1, x2, . . . , xn),

ρ′i(x1, x2, . . . , xn) = ρ′i−1(x1, x2, . . . , xn) ∧ ρi(xi,1, . . . , xi,ni
).

It can be easily checked that (a1, . . . , an) is an essential tuple for every pred-
icate ρ′i. Hence, ρ′i is essential for every i. It follows from item 6 of the def-
inition that ρ′i ∈ S for every i ∈ {1, 2, . . . , l}. Obviously, ρ′l is equal to ρ.
Therefore, ρ ∈ S and And(S) ∩ R̃k ⊆ S. This completes the proof.

3 CLONES FROM CLASSES Φ AND Υ.

3.1 General properties of predicates from Inv(right)

Let

B0 = {false, true, ρ+1, σ
=
3 , {0}, {1}, {2}, {0, 1}, {0, 2}, {1, 2}},

B1 =

{(
0 1

0 1

)
, ρ≤, ρ∨,2, ρN , ρW

}
.

By B2 we denote the set of all predicates ρ ∈ Inv(right) such that for
every i ∈ {1, 2, . . . , ar(ρ)} we have VarValues(ρ, i) ⊆ {0, 1}.

Let Main be the set of all predicates ρ ∈ R3 such that the following
conditions hold for some m ∈ {1, . . . , ar(ρ)} :

1. VarValues(ρ, i) ⊆ {0, 1} for every i ∈ {1, 2, . . . ,m}.

2. For every am+1, . . . , aar(ρ) ∈ E3 we have

ρ(1, . . . , 1, am+1, . . . , aar(ρ)) = 1.

So, VarValues(ρ, i) ⊆ {0, 1} for every i ≤ m, VarValues(ρ, i) = {0, 1, 2}
for every i > m.

Lemma 3.1. B0 ⊆ [{ρ+1, {0, 1}}].

Proof. By Lemma 2.2, we have

Shift({0, 1}) = {{0, 1}, {1, 2}, {0, 2}} ⊆ [{ρ+1, {0, 1}}].

Also {0, 1} ∩ {1, 2} = {1}, hence

Shift({1}) = {{0}, {1}, {2}} ⊆ [{ρ+1, {0, 1}}].
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Lemma 3.2. Suppose D ⊂ Em3 , D 6= ∅, then there exist i ∈ {1, 2, . . . ,m},
α ∈ D,β ∈ Em3 \D such that β(j) = α(j) for every j 6= i, β(i) = α(i) + 1.

Proof. Let ρ ∈ Rm3 be defined by the following condition

ρ(α) = 1⇐⇒ α ∈ D.

Since ρ takes on value 0 and value 1, we see that at least one of the variables
in ρ is not dummy.

Hence there exist i ∈ {1, 2, . . . ,m}, a1, . . . , am ∈ E3 such that for
ρ′(x) = ρ(a1, . . . , ai−1, x, ai+1, . . . , am) we have ρ′ 6= E3. Thus there is
some c ∈ E3 such that ρ′(c) = 1 and ρ′(c+ 1) = 0. We put

α = a1 . . . ai−1cai+1 . . . am, β = a1 . . . ai−1(c+ 1)ai+1 . . . am.

Lemma 3.3. Suppose ρ ∈ Inv(right), ar(ρ) ≥ 1, VarValues(ρ, i) = E3 for
every i ∈ {1, 2, . . . , ar(ρ)}. Then ρ ∈ And({ρ+1, σ

=
3 }).

Proof. The proof is by induction on the arity of ρ. If ar(ρ) = 1, then the
proof is trivial.

Let n = ar(ρ). Let σi = Strike(ρ, i) for i ∈ {1, 2, . . . , n}. By the induc-
tive assumption, σi ∈ And({ρ+1, σ

=
3 }).

We have two cases. First case, σi is not trivial for some i. Without loss
of generality it can be assumed that there exists ρ0 ∈ {ρ+1, σ

=
3 } such that

ρ0(α(1), α(n)) = 1 for every α ∈ ρ. Then we can easily show that

ρ(x1, . . . , xn) = σn(x1, . . . , xn−1) ∧ ρ0(x1, xn) ∈ And({ρ+1, σ
=
3 }),

which completes this case.
Second case, σi is trivial for every i ∈ {1, 2, . . . , n}. Suppose c ∈ E3,

then by Tc we denote the set of all α ∈ En−1
3 such that ρ(αc) = 1. Hence

T0 ∪ T1 ∪ T2 = En−1
3 .

We have two subcases. First subcase, T0 ∩ T1 6= ∅ (cases T1 ∩ T2 6= ∅
and T0 ∩ T2 6= ∅ are considered in the same way). Let α ∈ T0 ∩ T1, β ∈ T2.

Since right preserves ρ, we have

right(α1, β2) = right(α, β)2⇒ right(α, β) ∈ T2,

right(α0, right(α1, β2)) = right(α, β)0⇒ right(α, β) ∈ T0,

right(α1, right(α0, β2)) = right(α, β)1⇒ right(α, β) ∈ T1.
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Hence T0 ∩ T1 ∩ T2 6= ∅. If ρ is trivial, then there is nothing to prove. If
ρ is not trivial, then T0 ∩ T1 ∩ T2 6= En−1

3 and by Lemma 3.2 there exist
γ, δ ∈ En−1

3 , such that

γ ∈ T0 ∩ T1 ∩ T2, δ /∈ T0 ∩ T1 ∩ T2, right(γ, δ) = δ.

Since σn is trivial, there exists c ∈ E3 such that δ ∈ Tc. Since right
preserves ρ, we have

right(δc, γ(c+ 1)) = δ(c+ 1) ∈ ρ,

right(δ(c+ 1), γ(c+ 2)) = δ(c+ 2) ∈ ρ.

Hence δ ∈ T0 ∩ T1 ∩ T2. This contradiction completes this case.
Second subcase, for every α ∈ En−1

3 there exists a unique c ∈ E3 such
that α ∈ Tc. Obviously, T0 6= ∅ and T0 6= En−1

3 . Then by Lemma 3.2, there
exist α, β ∈ En−1

3 and i ∈ {1, 2, . . . , n − 1} such that α ∈ T0, β /∈ T0,

β(j) = α(j) for every j 6= i, β(i) = α(i) + 1. Without loss of generality it
can be assumed that i = 1.

So, we have d ∈ E3 and γ ∈ En−2
3 such that dγ ∈ T0, (d + 1)γ /∈ T0.

Assume that (d+ 1)γ ∈ T2, then

right(dγ0, (d+ 1)γ2) = (d+ 1)γ0 ⇒ (d+ 1)γ ∈ T0.

This contradiction proves that (d+ 1)γ ∈ T1.

If (d+ 2)γ ∈ T0, then

right((d+ 2)γ0, (d+ 1)γ1) = (d+ 2)γ1 ⇒ (d+ 2)γ ∈ T1.

Then T0 ∩T1 6= ∅, which contradicts the assumption. If (d+ 2)γ ∈ T1, then

right((d+ 2)γ1, dγ0) = dγ1 ⇒ dγ ∈ T1

Then T0 ∩ T1 6= ∅, which proves that (d+ 2)γ ∈ T2.

Let G = {δ ∈ En−2
3 | dδ ∈ T0 ∧ (d+ 1)δ ∈ T1 ∧ (d+ 2)δ ∈ T2}. Since

γ ∈ G, we see that G 6= ∅. Assume that G 6= En−2
3 , then by Lemma 3.2

there exist α, β ∈ En−2
3 such that

α ∈ G, β /∈ G, right(α, β) = β.

Without loss of generality it can be assumed that dβ /∈ T0.

Let us consider two cases.
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Suppose dβ ∈ T1, then right(dβ1, (d + 2)α2) = dβ2 ∈ ρ and dβ ∈ T2.

Then T1 ∩ T2 6= ∅, and this contradicts the assumption.
Suppose dβ ∈ T2, then right(dβ2, dα0) = dβ0 ∈ ρ and dβ ∈ T0. Then

T0 ∩ T2 6= ∅, and this contradicts the assumption.
Hence, G = En−2

3 and ρ(x1, . . . , xn) = 1 ⇔ (x1 = xn + d). Therefore,
ρ ∈ And({ρ+1, σ

=
3 }).

Lemma 3.4. Suppose ρ ∈ Inv(right) ∩ R̃3, then ρ ∈ Shift(B0 ∪Main).

Proof. If ar(ρ) ≤ 1 then ρ ∈ B0 and there is nothing to prove. Suppose
VarValues(ρ, i) = E3 for every i ∈ {1, 2, . . . , ar(ρ)}, then by Lemma 3.3
we have ρ ∈ And({ρ+1, σ

=
3 }). Since ρ is essential we get ρ ∈ Shift(B0).

This case is finished.
Suppose VarValues(ρ, i) 6= E3 for some i ∈ {1, 2, . . . , ar(ρ)}. Let

m = |{i | VarValues(ρ, i) 6= E3}|.

It can be shown that there exists ρ′ ∈ Shift(ρ) such that VarValues(ρ′, i) ⊆
{0, 1} for i ≤ m and VarValues(ρ′, i) = E3 for i > m. Since ρ′ is essential,
we see that VarValues(ρ′, i) = {0, 1} for every i ≤ m. Let n = ar(ρ)−m.

To complete the proof we need to show that ρ′(1, . . . , 1, b1, . . . , bn) = 1

for every b1, b2, . . . , bn ∈ E3. Put

ρ0(y1, . . . , yn) = ∃x1 . . . ∃xm ρ′(x1, . . . , xm, y1, . . . , yn).

By Lemma 3.3 we obtain that ρ0 ∈ And({ρ+1, σ
=
3 }). If ρ0 is not trivial then

it can be easily checked that there is no an essential tuple for ρ′, hence ρ′ is
not essential. This contradiction proves that ρ0 is trivial.

For every i ≤ m, since 1 ∈ VarValues(ρ′, i) there exists δi ∈ ρ′ such that
δi(i) = 1. Let

γ = right(δ1, right(δ2, right(. . . (right(δm−1, δm)) . . .))).

Obviously γ(i) = 1 for every i ∈ {1, 2, . . . ,m}. Since right ∈ Pol(ρ′), we
see that γ ∈ ρ′.

Let γ′ = [n(γ). Let G = {δ ∈ En3 | ρ′(1mδ) = 1}. Obviously, γ′ ∈ G
and G 6= ∅. Assume that G 6= En3 . By Lemma 3.2 there exist α, β ∈ En3
such that

α ∈ G, β /∈ G, right(α, β) = β.
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Since ρ0 is trivial, there exists β0 such that β0β ∈ ρ′. Since right ∈ Pol(ρ′),

we obtain
right(β0β, 1

mα) = 1mβ ∈ ρ′.

This contradiction proves that G = En3 . This completes the proof.

3.2 Clones aQ and aW.
Lemma 3.5. B0 ∪B1 ⊆ [{ρW , ρ+1}].

Remark. Note that [{ρW , ρ+1}] = Inv(a3π0).

Proof. Obviously, {0, 1} = Strike(ρW , 2). Hence, by Lemma 3.1 we have

B0 ⊆ [{ρW , ρ+1}]. Let σ =

(
0 1

0 1

)
. Then

σ(x, y) = σ=
3 (x, y) ∧ (x ∈ {0, 1}),

ρ≤(x, y) = ρW (y, x+ 1) ∧ (x ∈ {0, 1}),

ρ∨,2(x, y) = ρW (y, x+ 2) ∧ (x ∈ {0, 1}),

ρN (x, y) = ρW (x, y) ∧ ρW (x, y + 1).

Lemma 3.6. B0 ∪B1 ⊆ [{ρ=,01, ρ+1}].

Remark. Note that [{ρ=,01, ρ+1}] = Inv(aQ).

Proof. Obviously, ρW (x, y) = ∃z ρ=,01(x, y, z), hence by Lemma 3.5 we
have B0 ∪B1 ⊆ [{ρ=,01, ρ+1}].

Lemma 3.7. B0 ⊆ [{ρ=,012, ρ+1}].

Remark. Note that [{ρ=,012, ρ+1}] = Inv(aW).

Proof. Obviously, we have {0, 1} = Strike(Strike(ρ=,012, 2), 2). Therefore,
by Lemma 3.1 we get B0 ⊆ [{ρ=,012, ρ+1}].

Lemma 3.8. Suppose ρ ∈ Inv(right), then ρ ∈ [{ρ=,012, ρ+1}].

Remark. This lemma states that Inv(right) ⊆ [{ρ=,012, ρ+1}] = Inv(aW),
that is [{right}] ⊇ aW.
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Proof. The proof is by induction on the arity of ρ. If ar(ρ) = 0 then the proof
is trivial.

By Lemma 2.6, there exists a set of predicates W ⊆ [{ρ}∪{ρ=,012, ρ+1}]
such that ρ ∈ And(S) and every predicate in W is maximal with respect
to {ρ=,012, ρ+1}. Since right preserves the predicates ρ=,012 and ρ+1, we
have W ⊆ Inv(right). Hence, it is sufficient to prove this lemma only
for predicates that are maximal with respect to {ρ=,012, ρ+1}. Let α be a
key word for ρ. By Lemma 3.4 it can be assumed that ρ ∈ B0 ∪ Main.

If ρ ∈ B0, then the proof follows from Lemma 3.7. Suppose ρ ∈ Main,

VarValues(ρ, i) = {0, 1} for i ≤ m, VarValues(ρ, i) = E3 for i > m,

n = ar(ρ)−m.
By the definition ofMain, there exists i ≤ m such that α(i) = 0.Without

loss of generality it can be assumed that i = 1. Let

ρ0(x2, x3, . . . , xm, y1, . . . , yn) = ρ(0, x2, x3, . . . , xm, y1, . . . , yn)

By Lemma 2.3 we have ρ0 ∈ [{ρ, {0}}]. Hence ρ0 ∈ Inv(right), and by the
inductive assumption we obtain ρ0 ∈ [{ρ=,012, ρ+1}].

Let us define a predicate ρα. Put ρα(x1, . . . , xm+n) = 1 iff there exist
f2, f3, . . . , fm+n ∈ E3 such that for every i ∈ {2, 3, . . . ,m+ n} we have

ρ=,012(x1, fi, xi) = 1,

ρ0(f2, f3, . . . , fm+n) = 1.

Obviously, ρα ∈ [{ρ0, ρ=,012}] ⊆ [{ρ=,012, ρ+1}], ρα(α) = 0, and ρα ≥ ρ.

Since α is a key word for ρ and ρ is maximal with respect to {ρ=,012, ρ+1},
we have ρα = ρ. This completes the proof.

Lemma 3.9. Suppose ρ ∈ Inv(right), ρ=,012 /∈ [{ρ, ρ=,01, ρ+1}]. Then
ρ ∈ [{ρ=,01, ρ+1}].

Remark. In other words, if C is a clone, aW ⊆ C ⊆ aQ, and C 6= aW,
then C = aQ.

Proof. The proof is by induction on the arity of ρ. If ar(ρ) = 0 then the proof
is trivial.

By Lemma 2.6, it is sufficient to prove this lemma only for predicates that
are maximal with respect to {ρ=,01, ρ+1} . Let α be a key word for ρ. By
Lemma 3.4 ρ ∈ Shift(B0 ∪Main). If ρ ∈ Shift(B0), then the proof follows
from Lemma 3.6. Suppose ρ ∈ Shift(Main), then there exists i such that
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VarValues(ρ, i) = {b, b+ 1} and α(i) = b. Without loss of generality it can
be assumed that VarValues(ρ, 1) = {0, 1} and α(1) = 0.

Let r = ar(ρ), ρ0(x2, x3, . . . , xr) = ρ(0, x2, x3, . . . , xr). By Lemma 2.3
and Lemma 3.6 it follows that ρ0 ∈ [{ρ, {0}}] ⊆ [{ρ, ρ=,01, ρ+1}]. Hence,
ρ0 ∈ Inv(right), ρ=,012 /∈ [{ρ0, ρ=,01, ρ+1}] and by the inductive assump-
tion we obtain ρ0 ∈ [{ρ=,01, ρ+1}].

Let α′ = [r−1(α). It can be easily checked that ρ0(α′) = 0 and α′ is an
essential word for ρ0. Hence, ρ0 is an essential predicate.

Then by Lemma 3.4 it can be assumed that ρ0 ∈ B0 ∪Main.

Suppose ar(ρ0) = 1, then ρ belongs to the set

Shift

({(
0 1

0 1

)
,

(
0 1 1

0 0 1

)
,

(
0 1 1

1 0 1

)
, ρN , ρW

})
.

Hence, by Lemma 3.6 we have ρ ∈ [{ρ=,01, ρ+1}].
Suppose ar(ρ0) = 2 and ρ0 ∈ B0, then ρ ∈ Shift(ρ=,012) and ρ=,012 ∈

[{ρ, ρ+1}]. This contradict the assumption about ρ.
Suppose that ρ0 ∈ Main. Let VarValues(ρ0, i) = {0, 1} for i ≤ m,

VarValues(ρ0, i) = E3 for i > m, n = ar(ρ0)−m.
Let us define a predicate ρα. Put ρα(x1, x2, . . . , xm+n+1) = 1 iff there

exist f1, f2, . . . , fm ∈ E3 such that for every i ∈ {1, 2, . . . ,m} we have

ρ=,01(x1, fi, xi+1) = 1,

ρ0(f1, . . . , fm, xm+2, . . . , xm+n+1) = 1.

Obviously, ρα ∈ [{ρ0, ρ=,01}] ⊆ [{ρ=,01, ρ+1}], ρα(α) = 0, and ρα ≥ ρ.

Since α is a key word for ρ and ρ is maximal with respect to {ρ=,01, ρ+1},
we have ρα = ρ. This completes the proof.

3.3 Clones aP, aPN, aPn.
By ρkey,1, ρkey,2, and ρkey,3 we denote the predicates defined by the follow-
ing conditions:

ρkey,1(x1, x2, x3) = 1⇔ (x1, x2 ∈ {0, 1})∧
((x1 = 1) ∨ ((x2 = 0) ∧ x3 ∈ {0, 1}) ∨ (x3 = 1)),

ρkey,2(x1, x2, x3) = 1⇔ (x1 = 1) ∨ ((x1 = 0) ∧ (x2 = 1))∨
((x1 = 0) ∧ (x2 = 0) ∧ (x3 = 1)),
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ρkey,3(x1, x2, x3) = 1⇔ (x1 = 1) ∨ ((x1 = 0) ∧ (x2 = 1))∨
((x1 = 0) ∧ (x2 = 0) ∧ (x3 ∈ {1, 2})).

Lemma 3.10. {ρ≤, ρ∨,2} ⊆ [{ρN , ρ+1}] .

Remark. In other words, [{ρN , ρ+1}] = [{ρN , ρ∨,2, ρ+1}] = Inv(a2N) and
a2N ⊆M.

Proof. Obviously {0, 1} = Strike(ρN , 2). Then we have

ρ≤(x, y) = ρN (y, x) ∧ (x ∈ {0, 1}),

ρ∨,2(x, y) = ρN (x, y + 2) ∧ (y ∈ {0, 1}).

Lemma 3.11. ρ∨,3 = π∅,∅,∅ ∈ [{ρW , ρ+1}].

Remark. In other words, this lemma states that Pol({ρW , ρ+1}) = a3π0

Proof. ρ∨,3(x1, x2, x3) = ∃y ρW (x1, y) ∧ ρW (x2, y + 1) ∧ ρW (x3, y + 2).

Lemma 3.12. Suppose ρ ∈ Πm
n , m+ n ≥ 3, n ≥ 1. Then ρW ∈ [{ρ}].

Proof. Suppose ρ = πA1,...,Am
and 1 ∈ Ai. It can be easily checked that ρW

is obtained from ρ by striking all rows except the i-th and (m+ 1)-th.

Lemma 3.13. π{1,2,...,n} ∈ [{π{1,2,...,n,n+1}}].

Remark. This lemma implies that aPn+1 ⊆ aPn.

Proof. π{1,2,...,n}(x, y1, y2, . . . , yn) = π{1,2,...,n,n+1}(x, y1, y1, y2, . . . , yn)

Lemma 3.14. ρ=,01 ∈ [{ρkey,1} ∪B0].

Proof. Obviously, ρW (x, z) = ∃y ρkey,1(x, y, z),

ρ=,01(x1, x2, x3) = ∃y ρkey,1(x1, y, x2) ∧ ρW (y, x2 + 1)∧
ρkey,1(x1, y, x3) ∧ ρW (y, x3 + 1).
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Lemma 3.15. ρ=,01 ∈ [{ρkey,2} ∪B0].

Proof. ρ=,01(x, y, z) = ρkey,2(x, y, z + 1) ∧ ρkey,2(x, z, y + 1).

Lemma 3.16. ρ=,01 ∈ [{ρkey,3} ∪B0].

Proof. ρ=,01(x, y, z) = ρkey,3(x, y, z + 2) ∧ ρkey,3(x, z, y + 2).

Let κ0 = ρ≤, κ1 = ρN , κ2 = ρW , κr = π{1,2,...,r−1} for r ≥ 3.

By Lemma 3.10, Lemma 3.5, Lemma 3.12, and Lemma 3.13 it follows
that κr ∈ [{κr+1, ρ+1}] for every r ≥ 0.

Lemma 3.17. Suppose ρ ∈ Inv(right), ρ=,01 /∈ [{ρ}∪B0∪B2]. Then there
exists r ≤ ar(ρ) such that ρ is equivalent to κr with respect to B0 ∪B2.

Remark. The lemma essentially shows that ifC is a clone and aQ ⊂ C ⊆ aP

then C ∈ {aP∞,aP,aPN,aP1,aP2,aP3, . . . , }.

Proof. The proof is by induction on the arity of ρ. If ar(ρ) = 0 then ρ is
equivalent to κ0 with respect to B0 ∪B2. By Lemma 2.6, ρ is presented as a
conjunction of predicates δ1, . . . , δs ∈ [{ρ}∪B0∪B2] such that δi is maximal
with respect to B0 ∪ B2 for every i ∈ {1, 2, . . . , s}. Suppose we prove that
for every i ∈ {1, 2, . . . , s} there exists ri such that δi is equivalent to κri with
respect to B0 ∪B2. Therefore, it can be easily checked that ρ is equivalent to
κr with respect to B0 ∪B2, where r = max

i
(ri).

Hence, it is sufficient to prove this lemma only for predicates that are max-
imal with respect to B0 ∪ B2. Let α be a key word for ρ. By Lemma 3.4
it can be assumed that ρ ∈ B0 ∪ Main. If ρ ∈ B0, then ρ is equiva-
lent to κ0 = ρ≤ ∈ B2 with respect to B0 ∪ B2. Suppose ρ ∈ Main,

VarValues(ρ, i) = {0, 1} for i ≤ m, VarValues(ρ, i) = E3 for i > m,

n = ar(ρ) −m. Since α is essential for ρ, for every j ∈ {1, 2, . . . ,m + n}
there exists βj ∈ ρ such that α(p) = βj(p) for every p 6= j.

If n = 0, then ρ ∈ B2 and ρ is equivalent to κ0 with respect to B0 ∪B2.

Suppose n ≥ 1. If m = n = 1, then ρ ∈ Shift({κ1, κ2}).
Suppose m + n ≥ 3. Assume that there exist i1, i2 ≤ m, i1 6= i2 such

that α(i1) = α(i2) = 1. Since ρ ∈ Inv(right), we see that right(βi1 , βi2) =

α ∈ ρ. This contradiction proves that ]m(α) contains at most one 1.
Let us consider two cases. First case, there exists j ∈ {1, 2, . . . ,m} such

that α(j) = 1. Without loss of generality it can be assumed that j = 1. Using
Lemma 2.2, it can be assumed that α(p) = 0 for every p ≥ m + 1. Then
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we have α = 10m+n−1. Suppose βi(i) = 2 for some i ≥ m + 1, then
right(βi, β1) = α ∈ ρ. This contradiction proves that βj ∈ {0, 1}m+n for
every j ∈ {1, 2, . . . ,m+ n}.

Let us prove that ρkey,1 ∈ [{ρ} ∪ B0 ∪ B2]. Assume that d0m+n−22 ∈ ρ
for some d ∈ {0, 1}. Since 10m+n−21 = βm+n, 0m+n = β1, we have

right(right(d0m+n−22, 10m+n−21), 0m+n) = 10m+n−1 = α ∈ ρ.

This contradiction proves that d0m+n−22 /∈ ρ for every d ∈ {0, 1}. Then

ρkey,1(x1, x2, x3) = ∃f ρ≤(x2, f) ∧ x1 ∈ {0, 1} ∧ ρ(f, x1, . . . , x1, x3).

Since {0, 1}, ρ≤ ∈ B0∪B2, we see that ρkey,1 ∈ [{ρ}∪B0∪B2]. Hence, by
Lemma 3.14 we have ρ=,01 ∈ [{ρ}∪B0∪B2]. This contradicts the condition
of the lemma.

Second case, α(j) = 0 for every j ≤ m. Assume that m ≥ 2. Let

ρ′(x, y1, . . . , yn) = ρ(x, x, . . . , x, y1, . . . , ym).

By the inductive assumption, ρ′ is equivalent to κp with respect to B0 ∪ B2

for some p ≥ 0. Let us define a predicate ρα

ρα(x1, . . . , xm, y1, . . . , yn) = ∃f ρ→,m(x1, . . . , xm, f) ∧ ρ′(f, y1, . . . , yn).

It can be easily checked that ρ′(x, y1, . . . , yn) = ρα(x, x, . . . , x, y1, . . . , ym).

Hence, ρα and ρ′ are equivalent with respect to B0 ∪B2. Obviously, ρα ≥ ρ
and ρα(α) = 0. Since ρ is maximal with respect toB0∪B2 we obtain ρ = ρα.

Then ρ is equivalent to κp with respect to B0 ∪B2.

Assume that m = 1, n ≥ 2. By Lemma 2.2, it can be assumed that
α, β1, . . . , βn+1 ∈ {0, 1}n+1. Assume that α(i1) = α(i2) = 1 for some
i1, i2, i1 6= i2. Since ρ ∈ Inv(right) we have right(βi1 , βi2) = α ∈ ρ. This
contradiction proves that either there exists a unique i such that α(i) = 1, or
α = 0n+1. Let us consider two subcases. First subcase, α 6= 0n+1. Without
loss of generality it can be assumed that α = 0n1. Hence,

right(right(. . . (right(β2, β3), β4), . . .), βn) = 01n ∈ ρ.

Obviously, βn+1 = 0n+1 ∈ ρ. Assume that 02n−11 ∈ ρ, then

right(02n−11, 0n+1) = 0n1 = α ∈ ρ.

This contradiction proves that 02n−11 /∈ ρ.
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Assume that 02n−10 ∈ ρ, then

right(02n−10, 01n) = 02n−11 ∈ ρ.

This contradiction proves that 02n−10 /∈ ρ. Let

δ(x1, x2, x3) = ρ(x1, x2, . . . , x2, x3) ∧ ρ(x1, x3, . . . , x3, x2).

It can be easily checked that if ρ(0, 2, . . . , 2) = 1, then δ = ρ=,012; and if
ρ(0, 2, . . . , 2) = 0, then δ = ρ=,01. Then it follows from Lemma 3.8 that
ρ=,01 ∈ [{ρ} ∪B0 ∪B2]. This contradicts the condition of the lemma.

Second subcase, α = 0n+1. Hence βi = 0i−110n−i+1 for every i. Since
ρ ∈ Inv(right) we see that for every a1, . . . , an+1 ∈ {0, 1}

ρ(a1, a2, . . . , an+1) = 0⇔ a1 = a2 = . . . = an+1 = 0.

Let ρ0(y1, . . . , yn) = ρ(0, y1, . . . , yn). Obviously, 0n is an essential word for
ρ0 and ρ0 is essential. By Lemma 3.4 we have ρ0 ∈ Shift(B0 ∪Main).

If ρ0 ∈ Shift(B0), then ρ ∈ Shift(ρ=,012). By Lemma 3.8 we have
ρ=,01 ∈ [{ρ} ∪B0 ∪B2]. This contradicts the condition of the lemma.

Suppose ρ0 ∈ Shift(Main). Let W1 = {i | VarValues(ρ0, i) = E3},
W2 = {1, 2, . . . , n} \W1. Assume that W1 6= ∅. Substituting in ρ variable y
for the (i+1)-th variable for every i ∈W2, and substituting variable z for the
(i + 1)-th variable for every i ∈ W1 we obtain a predicate ρ′(x1, y, z) such
that:

∀c, d ∈ E3 ρ′(1, c, d) = ρ′(0, 1, c) = ρ′(0, 0, 1) = 1,

∀c, d ∈ E3 ρ′(2, c, d) = ρ′(0, 2, c) = ρ′(0, 0, 0) = 0.

If ρ′(0, 0, 2) = 0, then ρ′ = ρkey,2; if ρ′(0, 0, 2) = 1, then ρ′ = ρkey,3.

By Lemma 3.15 and Lemma 3.16 it follows that ρ=,01 ∈ [{ρ} ∪ B0 ∪ B2].

This contradicts the condition of the lemma.
Suppose W1 = ∅. Therefore, ρ0 = ρ∨,n. It can be easily checked that

ρ = π{1,...,n} = κn+1. This completes the proof.

3.4 Final constructions for Φ and Υ.
Lemma 3.18. Suppose ρ ∈ B2, α is an essential word for ρ. Then α contains
at most one 1.

Proof. Suppose n = ar(ρ). By the definition of an essential tuple for every
i ∈ {1, 2, . . . , n} there exists βi ∈ ρ such that α(j) = βi(j) for every j 6= i.
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Assume the converse. Let α(i) = α(j) = 1 for some i 6= j. Hence
right(βi, βj) = α ∈ ρ. This contradiction completes the proof.

Lemma 3.19. B2 ⊆ [{ρ→,2, {0}, {1}}].

Proof. We consider all predicates from B2 as predicates from R2. It is suf-
ficient to show that Pol({ρ→,2, {0}, {1}}) ⊆ Pol(B2). Obviously x ∨ y
preserves every predicate σ ∈ B2. By the description of Post’s lattice we
have Pol({ρ→,2, {0}, {1}}) = Pol(B2) = [{x ∨ y}]. This completes the
proof.

Lemma 3.20. Suppose ρ ∈ B2 is essential, ar(ρ) ≥ 2, ρ→,2 /∈ [{ρ}], then

ρ ∈
{(

0 1

0 1

)
,

(
0 0 1

0 1 1

)
,

(
0 1 1

0 0 1

)
, ρ∨,2, ρ∨,3, . . .

}
Proof. If ar(ρ) = 2, then we can easily show that

ρ ∈
{(

0 1

0 1

)
,

(
0 0 1

0 1 1

)
,

(
0 1 1

0 0 1

)
, ρ∨,2

}
.

Suppose ar(ρ) ≥ 3. Let α be an essential word for ρ ∈ Rn3 . For every
i ∈ {1, 2, . . . , n} there exists βi ∈ ρ such that α(j) = βi(j) for every j 6= i.

By Lemma 3.18 α contains at most one 1. We consider two cases. First
case, α(j) = 1 for some j ∈ {1, 2, . . . , n}. Without loss of generality it can
be assumed that j = 1. Then we have β1 = 0n, βi = 10i−210n−i for i ≥ 2.

Let us prove that ρ≤ ∈ [{ρ}]. Since ρ ∈ Inv(right), we have 1γ ∈ ρ for
every γ ∈ {0, 1}n−1 \ {0n−1}.

We consider two subcases. First subcase, there exists i ∈ {2, 3 . . . , n}
such that 0i−110n−i /∈ ρ. Without loss of generality it can be assumed that
i = n. Then ρ≤(x, y) = ρ(y, y, . . . , y, x)

Second subcase, for every i ∈ {2, 3 . . . , n}we have 0i−110n−i ∈ ρ. Since
ρ ∈ Inv(right), we get 01n−1 ∈ ρ. Then ρ≤(x, y) = ρ(x, y, y, . . . , y)

So, we proved that ρ≤ ∈ [{ρ}]. It can be easily checked that

ρ→,2(x, y, z) = ∃x′ ∃y′ ρ(z, x′, y′, y′, . . . , y′) ∧ ρ≤(x′, x) ∧ ρ≤(y′, y).

But this contradicts the condition of the lemma.
Second case, α = 0n. It can easily be checked that βi = 0i−110n−i for

every i ∈ {1, 2, . . . , n}. Since ρ ∈ Inv(right), we obtain ρ = ρ∨,n.
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Lemma 3.21. Suppose ρ ∈ Inv(right) ∩ R̃3, ρ→,2 /∈ [{ρ} ∪ B0], then
ρ ∈ Shift(B0 ∪B1 ∪Π).

Proof. Since ρ is essential, there exists an essential word α for ρ. By the
definition of an essential tuple for every i ∈ {1, 2, . . . , ar(ρ)} there exists
βi ∈ ρ such that α(j) = βi(j) for every j 6= i.

By Lemma 3.4 we can assume that ρ ∈ B0∪Main. If ρ ∈ B0 then there is
nothing to prove. Suppose ρ ∈ Main, which means that VarValues(ρ, i) =

{0, 1} for i ≤ m, VarValues(ρ, i) = E3 for i > m, n = ar(ρ) − m. By
Lemma 2.2, we can assume that α, β1, . . . , βm+n ∈ {0, 1}m+n.

If n = 0, then by Lemma 3.20 we have ρ ∈ B0 ∪ B1 ∪ Π0, which proves
the lemma in this case.

Suppose n ≥ 1. If m = n = 1, then ρ ∈ Shift({ρN , ρW }) ⊆ Shift(B1),
which proves the lemma in this case.

Suppose m+ n ≥ 3. Let

ρ0(x1, . . . , xm, y1, . . . , yn) = 1⇔
(ρ(x1, . . . , xm, y1, . . . , yn) = 1) ∧ (∀i yi ∈ {0, 1}).

In other words ρ0 = ρ ∩ {0, 1}m+n. Obviously, ρ0 ∈ [{ρ} ∪ B0]. Clearly,
α is an essential word for ρ0, hence, ρ0 is essential and by Lemma 3.20 we
have ρ0 = ρ∨,m+n. Therefore, α = 0m+n.

Let

ρ1(x1, . . . , xm, y1, . . . , yn) = 1⇔
(ρ(x1, . . . , xm, y1 + 1, . . . , yn + 1) = 1) ∧ (∀i yi ∈ {0, 1}).

Obviously ρ1 ∈ [{ρ}∪B0]. It follows from Lemma 2.5 and Lemma 3.20 that

ρ1 ∈ And({σ, ρ≤, {0}, {1}, ρ∨,2, ρ∨,3, . . .}),

where σ =

(
0 1

0 1

)
.

Since ρ0 = ρ∨,m+n and n ≥ 1 we get ρ1(a1, . . . , am, 0, . . . , 0) = 1 for
every a1, . . . , am ∈ {0, 1}. Since ρ ∈ Main for every b1, . . . , bn ∈ {0, 1}
we have ρ1(1, . . . , 1, b1, . . . , bn) = 1 .

Therefore, ρ1 ∈ And({ρ≤}) and there exist i1, . . . , is ∈ {1, 2, . . . , n},
j1, . . . , js ∈ {1, 2, . . . ,m} such that

ρ1(x1, . . . , xm, y1, . . . , yn) = ρ≤(yi1 , xj1) ∧ . . . ∧ ρ≤(yis , xjs).
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By Aj we denote the set of all i such that ρ≤(yi, xj) is used in this formula.
Assume that A1 ∪ . . . ∪Am 6= {1, 2 . . . , n}. Then there exists some

c ∈ {1, 2 . . . , n} \ (A1 ∪ . . . ∪Am).

Let

ρ2(x1, . . . , xm, y1, . . . , yn) = 1⇔ (∀i yi ∈ {0, 1})∧
(ρ(x1, . . . , xm, y1, . . . , yc−1, yc + 1, yc+1, . . . , yn) = 1).

Obviously ρ2 ∈ [{ρ} ∪ B0]. Analogously as for ρ1 we show that for every
a1, . . . , am, b1, . . . , bn ∈ {0, 1} we have

ρ2(a1, . . . , am, 0, . . . , 0) = ρ2(1, . . . , 1, b1, . . . , bn) = 1.

Since ρ1(0, . . . , 0︸ ︷︷ ︸
m+c−1

, 1, 0, . . . , 0︸ ︷︷ ︸
n−c

) = 1, we get ρ2(0, . . . , 0︸ ︷︷ ︸
m

, 1, . . . , 1︸ ︷︷ ︸
n

) = 1. By

Lemma 2.5 and Lemma 3.20 we have

ρ2 ∈ And({σ, ρ≤, {0}, {1}, ρ∨,2, ρ∨,3, . . .}).

Hence, we get ρ2 = {0, 1}m+n.

Let

ρ3(x1, . . . , xm, y1, . . . , yn) = 1⇔ (∀i yi ∈ {0, 1})∧
(ρ(x1, . . . , xm, y1, . . . , yc−1, yc + 2, yc+1, . . . , yn) = 1).

Obviously, we have ρ3 ∈ [{ρ} ∪ B0]. Since ρ2 = {0, 1}m+n, for every
a1, . . . , am, b1, . . . , bn ∈ {0, 1} we have

ρ3(a1, . . . , am, 0, . . . , 0) = ρ3(1, . . . , 1, b1, . . . , bn) = 1.

Since ρ0 = ρ∨,m+n and m+ n ≥ 3, for every j ∈ {1, . . . ,m} we have

ρ3(1, 1, . . . , 1︸ ︷︷ ︸
j−1

, 0, 1, 1, . . . , 1︸ ︷︷ ︸
m+n−j

) = 1.

By Lemma 2.5 and Lemma 3.20 it follows that

ρ3 ∈ And({σ, ρ≤, {0}, {1}, ρ∨,2, ρ∨,3, . . .}).

Hence, we get ρ3 = {0, 1}m+n, and ρ(0, . . . , 0) = 1. This contradiction
proves that A1 ∪ . . . ∪Am = {1, 2 . . . , n}.
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Let us prove that ρ = πA1,...,Am . Obviously these predicates are equal on
the tuples from {0, 1}m+n. Let γ ∈ {0, 1}m × En3 , γ(j) = 2 for some j.
Without loss of generality it can be assumed that there exists n′ < n such that

γ(m+ 1), γ(m+ 2), . . . , γ(m+ n′) ∈ {0, 1},

γ(m+ n′ + 1) = γ(m+ n′ + 2) = . . . = γ(m+ n) = 2.

Put γ′ =]m(γ)1n
′
2n−n

′
. Let

ρ4(x1, . . . , xm, y1, . . . , yn) = 1⇔ (∀i yi ∈ {0, 1})∧
(ρ(x1, . . . , xm, y1, . . . , yn′ , yn′+1 + 1, . . . , yn + 1) = 1).

Obviously ρ4 ∈ [{ρ} ∪ B0]. In the same way as for the predicates ρ1 and ρ2

we can show that for every a1, . . . , am+n′ , b1, . . . , bn ∈ {0, 1} we have

ρ4(a1, . . . , am+n′ , 0, . . . , 0) = ρ4(1, . . . , 1, b1, . . . , bn) = 1.

By Lemma 2.5 and Lemma 3.20 we have

ρ4 ∈ And({σ, ρ≤, {0}, {1}, ρ∨,2, ρ∨,3, . . .}).

Hence, ρ4 ∈ And({ρ≤}) and there exist d1, . . . , ds′ ∈ {n′+1, n′+2, . . . , n},
e1, . . . , es′ ∈ {1, 2, . . . ,m} such that

ρ4(x1, . . . , xm, y1, . . . , yn) = ρ≤(yd1 , xe1) ∧ . . . ∧ ρ≤(yds′ , xes′ ).

Using the formula above, we get ρ(γ) = ρ(γ′). Obviously,

πA1,...,Am
(γ) = πA1,...,Am

(γ′).

By the definition of A1, . . . , Am we have ρ(γ′) = πA1,...,Am
(γ′). Hence,

πA1,...,Am
(γ) = ρ(γ) for every γ ∈ {0, 1}m×En3 . This completes the proof.

Lemma 3.22. Suppose ρ1, ρ2 ∈ Π, ρ2 .1 ρ1, then ρ2 ∈ [{ρ1} ∪B0 ∪B1].

Proof. Suppose ρ1 = πA1,...,Am
∈ Πm

n , ρ2 = πA′1,...,A′m′ ∈ Πm′

n′ , where
m′ ≥ m, n′ ≤ n, m′ + n′ = m + n, A′i = Ai ∩ {1, 2, . . . , n′} for i ∈
{1, 2, . . . ,m}, A′i = ∅ for i ∈ {m + 1,m + 2, . . . ,m′}. It can be easily
checked that

ρ2(x1, . . . , xm′ , y1, . . . , yn′) = (∀i ≥ m+ 1 : xi ∈ {0, 1})∧
ρ1(x1, . . . , xm, y1, . . . , yn′ , xm+1, xm+2, . . . , xm′).
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Lemma 3.23. Suppose ρ1, ρ2 ∈ Π, ρ2 .2 ρ1, then ρ2 ∈ [{ρ1} ∪B0 ∪B1].

Proof. Suppose that ρ1 = πA1,...,Am
∈ Πm

n , ρ2 = πA′1,...,A′m′ ∈ Πm′

n′ ,

m′ ≤ m, n′ = n, the set {1, 2, . . . ,m} is divided into non-overlapping sets
K1, . . . ,Km′ such that A′i =

⋃
j∈Ki

Aj . It is easy to show that ρ2 can be ob-

tained from ρ1(x1, . . . , xm, y1, . . . , yn) by identification of variables from
the set {xi | i ∈ Kj} for every j, and permutation of variables.

Lemma 3.24. Suppose ρ1, ρ2 ∈ Π, ρ2 .3 ρ1, then ρ2 ∈ [{ρ1} ∪B0 ∪B1].

Proof. Suppose ρ1 = πA1,...,Am
∈ Πm

n , ρ2 = πA′1,...,A′m ∈ Πm
n . For every

j ∈ {1, 2, . . . ,m} we have Aj ⊆ A′j . It can be easily checked that

ρ2(x1, . . . , xm, y1, . . . , yn) = ρ1(x1, . . . , xm, y1, . . . , yn)∧
∧
i∈A′j

ρW (xj , yi).

Lemma 3.25. Suppose ρ1, ρ2 ∈ Π, ρ2 . ρ1, then ρ2 ∈ [{ρ1} ∪B0 ∪B1].

Proof. If σ1, σ2 ∈ Π, σ1 ' σ2, then σ1 is obtained from σ2 by a permutation
of variables. Hence σ1 ∈ [{σ2}] and σ2 ∈ [{σ1}]. Using this, Lemma 3.22,
Lemma 3.23, and Lemma 3.24 we obtain that ρ2 ∈ [{ρ1} ∪B0 ∪B1].

Theorem 3.26. Suppose M is a clone, M ⊆ Pol({ρ+1, {0, 1}}) and
right ∈M. Then M ∈ Φ ∪Υ ∪ {M,C}.

Proof. Let S = Inv(M). By Lemma 3.1, we have B0 ⊆ S.
By Lemma 3.8, it follows that if ρ=,012 ∈ S, then S = Inv(right) and

M = [{right}] = aW ∈ Φ. Suppose ρ=,012 /∈ S.
Suppose ρ=,01 ∈ S. It follows from Lemma 3.9 that [{ρ=,01, ρ+1}] con-

tains every predicate ρ ∈ Inv(right) such that ρ=,012 /∈ [{ρ, ρ=,01, ρ+1}].
Therefore, S = [{ρ=,01, ρ+1}] and M = aQ ∈ Φ. Suppose ρ=,01 /∈ S.

Suppose ρ→,2 ∈ S, then by Lemma 3.19 we getB2 ⊆ S. By Lemma 3.17,
every predicate from S is equivalent to κn with respect to B0 ∪ B2 for some
n ≥ 0. Let n0 be the maximal number such that κn0

∈ S. Hence, we have
S = [{κn0} ∪ B0 ∪ B2]. If n0 = 0, then M = aP ∈ Φ, if n0 = 1, then
M = aPN ∈ Φ, if n0 ≥ 2, then M = aPn0−1 ∈ Φ. If n0 does not exist
then S = [{κn | n ∈ N0} ∪B0 ∪B2] and M = aP∞ ∈ Φ.
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Suppose ρ→,2 /∈ S. By Lemma 3.21 we have

S ∩ R̃3 ⊆ Shift(B0 ∪B1 ∪Π).

Suppose ρW ∈ S. By Lemma 3.5, we have B1 ⊆ S. Let Sπ = S ∩ Π.

By Lemma 3.25, Sπ is a downset. By Lemma 3.11, π∅,∅,∅ ∈ Sπ. Hence
Sπ 6= ∅. Therefore S∩R̃3 = Shift(Sπ∪B0∪B1) andM = Clone(Sπ) ∈ Υ.

Suppose ρW /∈ S, ρ∨,2 ∈ S. By Lemma 3.12 we have S ∩Π ⊆ Π0, where
Π0 = {ρ∨,i | i ≥ 3}. Let n0 be the maximal number such that ρ∨,n0

∈ S.
If n0 does not exist then put n0 = ∞. Obviously ρ∨,i can be obtained from
ρ∨,i+1 by identification of variables. Hence ρ∨,i ∈ [{ρ∨,i+1}] for every i.
Using Lemma 3.10, we get ρ≤ ∈ [{ρN , ρ+1}] . Therefore, only the following
cases are possible:

1. ρN ∈ S, hence M = an0N ∈ Φ,

2. ρN /∈ S, ρ≤ ∈ S, hence M = an0M ∈ Φ,

3. ρ≤ /∈ S, hence M = an0 ∈ Φ.

Suppose ρ∨,2 /∈ S, then using Lemma 3.10 we get either S∩R̃3 = Shift(B0)

and M = C ∈ Θ, or S ∩ R̃3 = Shift(B0 ∪ {ρ≤}) and M = M ∈ Θ. This
completes the proof.

4 PROOF OF THE MAIN STATEMENTS AND THEOREMS

4.1 Correctness of the description of the lattice
Let

B3 =

{
{0}, {0, 1},

(
0 1

0 1

)
, ρ+1, ρ≤, σ

=
3 , ρ∨,2, ρN , ρW

}
.

Obviously, B3 ⊆ B0 ∪B1.

The proof of the following theorem is rather cumbersome and complicated.
It does not contain any interesting idea. We just check carefully all conditions
from the definition of essentially closed set. That is why, we omit the proof
and refer the reader to [12].

Theorem 4.1. Suppose F ∈ Π̃, then Shift(F ∪B3) is essentially closed.

Lemma 4.2. Suppose πA1,...,Am ∈ Πm
n , m + n ≥ 3, then 0m+n is a unique

essential word for πA1,...,Am
.
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Proof. Assume that α 6= 0m+n and α is essential for πA1,...,Am . Let

ρ0(x1, . . . , xm, y1, . . . , yn) =

 ∧
j∈Ai

ρW (xi, yj)

 ∧(∧
i

xi ∈ {0, 1}

)
.

Then πA1,...,Am
(β) = ρ0(β) for every β 6= 0m+n. Then α is essential for ρ0.

But the predicate ρ0 is not essential. This contradiction concludes the proof.

Lemma 4.3. Suppose F ∈ Π̃, ρ ∈ Shift(F ) ∩Π, then ρ ∈ F.

Proof. Suppose ρ ∈ Shift(ρ′), where ρ′ ∈ Πm
n ∩ F. By Lemma 4.2, 0m+n

is a unique essential word for ρ and ρ′. Hence, there exists a permutation
σ : {1, 2, . . . ,m+ n} → {1, 2, . . . ,m+ n} such that

ρ(z1, z2, . . . , zm+n) = ρ′(zσ(1), zσ(2), . . . , zσ(m+n)).

Since ρ ∈ Π, we obtain that VarValues(ρ, i) = {0, 1} for i ≤ m, and
VarValues(ρ, i) = E3 for i > m. Therefore, σ(i) ≤ m for every i ≤ m. Let

ρ0(z1, z2, . . . , zm+n) = ρ′(z1, . . . , zm, zσ(m+1), zσ(m+2), . . . , zσ(m+n)).

It can be easily checked that

ρ(z1, z2, . . . , zm+n) = ρ0(zσ(1), zσ(2), . . . , zσ(m), zm+1, . . . , zm+n).

Then ρ .2 ρ0 ' ρ′. Hence, ρ . ρ′ and ρ ∈ F. This completes the proof.

Theorem 4.4. Suppose F1, F2 ∈ Π̃, then

Clone(F1) ⊆ Clone(F2)⇐⇒ F1 ⊇ F2.

Proof. If F1 ⊇ F2, then obviously Clone(F1) ⊆ Clone(F2).

Suppose Clone(F1) ⊆ Clone(F2), then

[F1 ∪ {ρW , ρ+1}] ⊇ [F2 ∪ {ρW , ρ+1}].

By Lemma 3.5 we have B3 ⊆ [{ρW , ρ+1}]. Since {ρW , ρ+1} ⊆ B3 we get
[{ρW , ρ+1}] = [B3] and thus [F1 ∪B3] ⊇ [F2 ∪B3]. So, we have

[F1 ∪B3] ∩ R̃3 ⊇ [F2 ∪B3] ∩ R̃3.
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By Theorem 4.1, Shift(F1 ∪ B3) and Shift(F2 ∪ B3) are essentially closed.
Then it follows from Lemma 2.2 and Theorem 2.8 that

[F1 ∪B3] ∩ R̃3 = Shift(F1 ∪B3), [F2 ∪B3] ∩ R̃3 = Shift(F2 ∪B3).

Hence Shift(F1 ∪B3) ⊇ Shift(F2 ∪B3) and

Shift(F1 ∪B3) ∩Π ⊇ Shift(F2 ∪B3) ∩Π.

If ρ ∈ F2, then ρ ∈ Shift(F1) ∩ Π. By Lemma 4.3 we have ρ ∈ F1. Hence,
F1 ⊇ F2 and the theorem is proved.

Theorem 4.5 ([9, 12]). Suppose M is a clone in P3, M ⊆ Pol(ρ+1), and
M 6⊆ Pol({0, 1}). Then M ∈ Θ.

Theorem 4.6 ([9, 12]). Suppose M is a clone in P3, right, left /∈ M, and
M ⊆ Pol({ρ+1, {0, 1}}). Then M ∈ Θ.

Theorem 4.7. Θ∪Φ∪Υ is the set of all clonesM such thatM ⊆ Pol (ρ+1) .

Proof. Suppose M ⊆ Pol(ρ+1). We shall prove that M ∈ Υ ∪ Θ ∪ Φ.

Suppose S = Inv(M).

If {0, 1} /∈ S, then using Theorem 4.5, we get M ∈ Θ.

Suppose {0, 1} ∈ S. If right ∈ M or left ∈ M, then by Theorem 3.26
we have M ∈ Φ ∪Υ ∪ {M,C}.

If right /∈ M, left /∈ M then it follows from Theorem 4.6 that M ∈ Θ.

This completes the proof.

4.2 Pairwise inclusion of clones into each other
Theorem 4.8. Suppose t ≥ 3, F ∈ Π̃, then Clone(F ) ⊂ atN iff either t = 3

or F 6⊆ Πt−1.

Proof. First, let us show that Clone(F ) 6= atN. It is sufficient to check that
the function sN ∈ atN and sN does not preserve ρW .

Suppose Clone(F ) ⊂ atN. Since Shift(F ∪B3) is essentially closed, we
see that ρ∨,t ∈ F. Hence, either t = 3, or F 6⊆ Πt−1.

Let us prove the sufficiency. The proof follows from Lemma 3.11 for
t = 3. Suppose t ≥ 4, ρ ∈ F \ Πt−1, then ρ ∈ Πm

n , where m + n ≥ t.

It can be easily checked that ρ∨,t .2 ρ∨,m+n .1 ρ. Therefore, ρ∨,t . ρ

and ρ∨,t ∈ F. By the definition of atN, we have Clone(F ) ⊂ atN. This
completes the proof.
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Lemma 4.9. Suppose n ∈ N, then gn ∈ aPn, gn /∈ aPn+1.

Proof. It can be easily checked that g1 ∈ Pol(ρW ) and gn ∈ Pol(ρ→,2) for
every n ∈ {1, 2, . . .}.Hence g1 ∈ aP1. Let us prove that gn ∈ Pol(π{1,...,n})

for n ≥ 2. Assume the converse. Then there exist α1, . . . , αn+2 ∈ π{1,...,n}
such that

gn(α1, α2, . . . , αn+2) = β /∈ π{1,...,n}.

Since gn preserves {0, 1} and β /∈ π{1,...,n}, we have β(1) = 0. Hence,
αi(1) = 0 for every i ≤ n + 1. Then it is easy to show that αi ∈ {0, 1}n+1

for every i ≤ n+ 1. Therefore, β ∈ {0, 1}n+1. By the definition of π{1,...,n},
αi contains 1 for every i ≤ n + 1. Hence, there exist j ∈ {2, 3, . . . , n + 1}
and i1, i2 ∈ {1, 2, . . . , n + 1} such that i1 6= i2 and αi1(j) = αi2(j) = 1.

Therefore, β(j) = 1 and β ∈ π{1,...,n}. This contradiction proves that gn ∈
Pol(π{1,...,n}) for every n ≥ 2.

Let us prove that gn /∈ Pol(π{1,2,...,n+1}). Let αi = 0i10n+1−i for every
i ∈ {1, 2, . . . , n + 1}, αn+2 = 12n+1. Obviously, αi ∈ π{1,2,...,n+1} for
every i ∈ {1, 2, . . . , n+ 2}, and

gn(α1, . . . , αn+2) = 0n+2 /∈ π{1,2,...,n+1}.

This completes the proof.

Lemma 4.10. Suppose t ≥ 1, then Πt ⊆ [{ρ+1, ρ→,2, ρW , π{1,2,...,t}].

Proof. Suppose πA1,...,Am
∈ Πm

n , where n ≤ t. If n = 0, then the lemma
follows from Lemma 3.19. Suppose n ≥ 1. By Lemma 3.13 and Lemma 3.19
we have

π{1,2...,n}, ρ→,m ∈ [{ρ+1, ρ→,2, ρW , π{1,2,...,t}}].

It can be easily checked that

πA1,...,Am(x1, . . . , xm, y1, . . . , yn) =

∃z ρ→,m(x1, . . . , xm, z) ∧ π{1,2,...,n}(z, y1, . . . , yn) ∧ (
∧
i∈Aj

ρW (xj , yi)).

This completes the proof.

Lemma 4.11. f∞π ∈ Pol(Π ∪B3).
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Proof. It is easy to check manually that f∞π ∈ Pol(B3). Let πA1,...,Am ∈
Πm
n . Assume that f∞π /∈ Pol(πA1,...,Am

). Let

ρ0(x1, . . . , xm, y1, . . . , yn) =

 ∧
j∈Ai

ρW (xi, yj)

 ∧(∧
i

xi ∈ {0, 1}

)
.

Obviously, πA1,...,Am(γ) = ρ0(γ) for every γ ∈ {0, 1}m+n \ {0m+n}. Since
f∞π ∈ Pol(B3), we have f∞π ∈ Pol(ρ0). Suppose α1, α2, α3 ∈ πA1,...,Am

,

f∞π (α1, α2, α3) = β /∈ πA1,...,Am
. Since f∞π (α1, α2, α3) ∈ ρ0, we get β =

0m+n.

Sinceα1 ∈ πA1,...,Am , there exists j such thatα1(j) = 1.By the definition
of f∞π we obtain that β(j) ∈ {1, 2}. This contradiction completes the proof.

Theorem 4.12. Suppose F ∈ Π̃, then aPt ⊂ Clone(F ) iff F ⊆ Πt.

Proof. Let

S = Inv(aPt) =
[{
ρ+1, ρ→,2, ρW , π{1,2...,t}

}]
.

Let us prove the necessity. Suppose aPt ⊂ Clone(F ), then F ⊆ S. Assume
that F 6⊆ Πt, then there exists ρ ∈ Πm

n ∩ F such that n > t. Obviously,

π{1,2,...,n}(x, y1, . . . , yn) = ρ(x, . . . , x, y1, . . . , yn).

Therefore, π{1,2,...,n} ∈ F ⊆ S. Hence aPn = aPt, where n > t. This
contradicts to Lemma 4.9.

Let us prove the sufficiency. By Lemma 4.10 we have Πt ⊆ S. Hence,
F ⊆ Πt ⊆ S and aPt ⊆ Clone(F ).

To complete the proof we have to show that aPt 6= Clone(F ). It follows
from Lemma 4.11 that f∞π ∈ Clone(F ). It is easy to check that f∞π does not
preserve ρ→,2, hence f∞π /∈ aPt. This completes the proof.

Theorem 4.13. Suppose F ∈ Π̃, then aP∞ ⊂ Clone(F ).

Proof. By Lemma 4.10 we obtain Π ⊂ Inv(aP∞). Hence, F ⊆ Inv(aP∞)

and aP∞ ⊆ Clone(F ).

To complete the proof we have to show that aP∞ 6= Clone(F ). By
Lemma 4.11 we have f∞π ∈ Clone(F ). It is easy to check that f∞π does
not preserve ρ→,2, hence f∞π /∈ aP∞. This completes the proof.
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4.3 Bases of clones
Lemma 4.14. Suppose l ≥ 3, then f lπ ∈ Pol(Πl ∪B3), f lπ /∈ Pol(ρ∨,l+1),

Proof. It can be easily shown that f lπ ∈ Pol(B3). Assume that f lπ /∈ Pol(ρ)

for some ρ = πA1,...,Am ∈ Πm
n , where m+ n ≤ l. Let

ρ0(x1, . . . , xm, y1, . . . , yn) =

 ∧
j∈Ai

ρW (xi, yj)

 ∧(∧
i

xi ∈ {0, 1}

)
.

Since f lπ ∈ Pol(B3), we have f lπ ∈ Pol(ρ0).

Suppose α1, α2, . . . , αl+1 ∈ ρ, f lπ(α1, α2, . . . , αl+1) = β /∈ ρ. Since
f lπ ∈ Pol(ρ0) and ρ(γ) = ρ0(γ) for every γ 6= 0m+n, we obtain β = 0m+n.

Every word α1, . . . , αl+1 contains at least one 1. Let i be the minimal
number such that αj1(i) = αj2(i) = 1 for some j1, j2, j1 6= j2. Since
m+ n < l + 1, this number exists.

If i ≤ m, then obviously β(i) = 1. This contradicts the assumption.
If i > m, then there exists j3, j4, j3 6= j4 such that αj3(i) = αj4(i) = 2.

By the definition of Π there exists i′ ≤ m such that (i − m) ∈ Ai′ . Hence
αj3(i′) = αj4(i′) = 1. This contradicts the assumption about the minimality
of i.

To complete the proof we need to show that f lπ does not preserve ρ∨,l+1.

Let αi = 0i−110l+1−i ∈ ρ∨,l+1 for i ∈ {1, 2, . . . , l + 1}. It can be easily
checked that f lπ(α1, α2, . . . , αl+1) = 0l+1 /∈ ρ∨,l+1. Therefore, f lπ does not
preserve ρ∨,l+1.

Lemma 4.15. Suppose n ≥ 2, then r3 ∈ Pol(π{1,2,...,n}).

Proof. Assume the converse. Then there exist α1, α2, α3 ∈ π{1,2,...,n} such
that r3(α1, α2, α3) = β /∈ π{1,2,...,n}. Since r3 preserves {0, 1}, we see
that β(1) ∈ {0, 1}. Therefore we get β(1) = 0, α1(1) = α2(1) = 0 and
α1, α2 ∈ {0, 1}n+1. Hence, β ∈ {0, 1}n+1. By the definition of π{1,2,...,n}
there exists i ≥ 2 such that α1(i) = 1. It can be easily checked that β(i) = 1.

This completes the proof.

Theorem 4.16. The clones of the class Θ have the following bases:

S = [{x+ 1, right}] = [{x+ 1, left}],

S0 = [{2x+ 2y, right}] = [{2x+ 2y, left}],
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SL = [{2x+ 2y, x+ 1}] = [{2x+ 2y + 1}], 1S = [{x+ 1}],

SL0 = [{2x+ 2y}], T = [{2x+ 2y, ps}],

C = [{plus, right}] = [{plus, left}],

D = [{plus,m0}] = [{plus0,m}] = [{plus,m, ps0}],

M = [{right, left}], DM = [{m, ps0}] = [{m0, ps}],

DN = [{m0}], TD = [{m, plus}], TM = [{ps,m}],

TN = [{m}], L = [{plus, ps0}] = [{plus0}],

TL = [{plus}], C2 = [{ps0}], TC2 = [{ps}], J3 = [{x}].

Theorem 4.17. The clones of the class Φ have the following bases:

a2 = [{f∞0 ,m}], a2M = [{ps, right,m}], a2N = [{m, right}].

For n ≥ 3

an = [{f∞0 , fnπ }] = [{f∞0 , fn0 }],

anM = [{fnπ , ps}] = [{fn0 }], anN = [{fnπ , sN}],

a∞ = [{f∞0 }], a∞M = [{f∞π , ps}], a∞N = [{f∞π , sN}].

For n ≥ 1

aP = [{right, ps}], aPN = [{sN}], aPn = [{gn}],

aP∞ = [{r3}], aQ = [{r4}], aW = [{right}].

Theorem 4.18. For n ≥ 3 and m ≥ 1 clones of the class Υ have the follow-
ing bases:

a∞π∞ = [{f∞π }], anπ∞ = [{fnπ }],

a∞π0 = [{s0}], anπ0 = [{s0, f
n
π }],

Clone(Πm) = [{gm, f∞π }], Clone(Π1 ∩Πn) = [{g1, f
n
π }].

Theorem 4.16 can be easily checked manually. Moreover bases for clones
from the class Θ were already found in [9]. The sketched proof of Theo-
rem 4.17 and Theorem 4.18 is below.

Proof. The main points of the proof are listed below:

1. f lπ ∈ Pol(Πl ∪B3), f lπ /∈ Pol(ρ∨,l+1) for l ≥ 3 (by Lemma 4.14);
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2. f∞0 ∈ Pol(ρ∨,n) for every n ≥ 3 (it follows from the properties of the
function x ∨ yz ∈ P2);

3. fn0 ∈ Pol(ρ∨,n), fn0 /∈ Pol(ρ∨,n+1) for every n ≥ 3 (it follows from
the properties of the function h∗n ∈ P2);

4. f∞π ∈ Pol(Π ∪B3) (by Lemma 4.11);

5. gn ∈ Pol(π{1,2,...,n}), gn /∈ Pol(π{1,2,...,n,n+1}) for every n ≥ 2 (by
Lemma 4.9);

6. r3 preserves π{1,2,...,n} for every n ≥ 2 (by Lemma 4.15).

To complete the proof we need to check that every clone M contains the
corresponding set of function B, B is not a subset of any clone M ′ ⊂ M.

Moreover, we have to check that for every f ∈ B there exists a clone M ′ ⊂
M such that B \ {f} ⊆M ′.

We will need the definition of BΠ and Bound from Section 1.

Theorem 4.19. Bound : Π̃→ BΠ is a bijective mapping.

Proof. It is easy to check that if ρ, σ ∈ Π and ρ . σ then ar(ρ) ≤ ar(σ).
This means that for every predicate ρ ∈ Π the set {σ | σ . ρ} is finite.
Then there are no infinite descending chains in EΠ. Hence there is a bijective
correspondence between antichains of EΠ and upsets of EΠ.

There is also a natural bijective correspondence between downsets and
upsets: the complement of an upset is a downset and vice versa. Combin-
ing these two, we get a bijective correspondence between downsets and an-
tichains, where the antichain corresponding to a downset is just the set of
minimal elements of the complement of this downset. The map Bound de-
scribe exactly this correspondence, with two minor modifications:

1. we work with the quasiordered set Π but not with the poset EΠ, hence
we have to take into account the corresponding equivalence relation.

2. the empty downset is excluded as well as the corresponding antichain
(namely, the one-element antichain containing only the bottom ele-
ment).
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Theorem 4.20. SupposeM ⊂ Clone(F ), F ∈ Π̃\{Π,Π0,Π1,Π2,Π3, . . .},
and g : Bound(F ) → M is a bijective mapping such that for every ρ̂ ∈
Bound(F ) we have

g(ρ̂) ∈ Clone(Fρ̂) \ Clone(F0).

Then M is a basis for Clone(F ).

Proof. First we shall show that [M ] ∈ Υ. Let n be the minimal number such
that Πn 6⊆ F. Since F 6= Π, this number exists. Let ρ′ ∈ Πn \ F . By
the definition, there exists ρ . ρ′ such that ρ̂ ∈ Bound(F ). It can easily
be checked that ρ ∈ Πn \ Πn−1. It follows from the condition that g(ρ̂) /∈
Pol(ρ). Hence, M 6⊆ Pol(Πn) and M 6⊆ Clone(Πn). By Theorem 4.12 we
obtain that aPn ⊆ Clone(Πn). Hence, M 6⊆ aPn.

Since F 6= Πn−1,we see that F 6⊆ Πn−1.By the condition of the theorem,
M ⊆ Clone(F ). Then using Theorem 4.12 we obtain that [M ] 6= aPt for
every t < n. It follows from the description of the lattice that [M ] ∈ Υ.

Thus there existsG ∈ Π̃ such that [M ] = Clone(G). Let us show that F =

G. Assume the converse, then F ⊂ G. Let δ be a minimal predicate in G \F
with respect to . . Since G is a downset, we have δ̂ ∈ Bound(F ). Then by
definition, g(δ̂) /∈ Pol(δ). Therefore, g(δ̂) /∈ Clone(G). This contradiction
proves that [M ] = Clone(F ).

Let us prove that M is a basis. Assume the converse. Then there exists
M ′ ⊂ M such that [M ′] = Clone(F ). Suppose f ∈ M \M ′, δ̂ = g−1(f).

It can be easily checked that F ∪ δ̃ and

M ′ ⊆ Clone(F ∪ δ̃).

Hence, [M ′] 6= Clone(F ). This completes the proof.

Corollary 4.21. Suppose M ∈ Θ ∪ Φ ∪Υ, then M has a basis.

Corollary 4.22. Suppose F ∈ Π̃, then Clone(F ) is finitely generated iff
Bound(F ) is finite.

The proof of these two corollaries is below.

Proof. Suppose that Clone(F ) ∈ Υ. Let us consider two cases. Suppose
F ∈ {Π,Π0,Π1,Π2, . . .}, then by Theorem 4.18 Clone(F ) is finitely gen-
erated. It can be checked that Bound(Π) = ∅, Bound(Π0) = {π{1},{1}},
Bound(Πi) = {π{1,2,...,i+1}} for every i ∈ {1, 2, 3, . . .}. This completes the
case.
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Suppose F /∈ {Π,Π0,Π1,Π2, . . .}. Let us define M ⊆ Clone(F ). For
every ρ̂ ∈ Bound(F ) we select a function from Clone(Fρ̂) \ Clone(F0). It
follows from Theorem 4.20 that M is a basis in Clone(F ). If Bound(F ) is
finite, then M is a finite basis in Clone(F ).

Suppose Bound(F ) is infinite, then M is an infinite basis. Assume that
there exists a finite basisM0 in Clone(F ). Then, there exists a finite setM ′ ⊂
M such that M0 ⊆ [M ′]. Then Clone(F ) = [M ′]. This contradicts the fact
that M is a basis.

Corollary 4.23. Suppose F ∈ Π̃, |F | <∞, then Clone(F ) is finitely gener-
ated.

Proof. Let us show that Bound(F ) is finite if F is finite. It can be checked
that if ρ . σ and ar(ρ)+1 < ar(σ) then there exists σ0 such that ρ . σ0 . σ

and ar(ρ) + 1 = ar(σ0). Since F is finite, there exists l ∈ {3, 4, 5, . . .} such
that F ⊆ Πl. Hence Bound(F ) ⊆ Πl+1 and Bound(F ) is finite.

Then by Corollary 4.22 Clone(F ) is finitely generated.

4.4 Relation degree
We will need the following well-known property of relation degree.

Lemma 4.24 ([5]). Suppose C1 ⊃ C2 ⊃ C3 ⊃ . . . is an infinite sequence of
clones, C∞ =

⋂
i

Ci. Then d(C∞) =∞.

Theorem 4.25. Suppose M ∈ Θ ∪ Φ, then

d(M) =



2, if M ∈ {S,S0,T,C,M,D,DM,DN,TD,TM,

TN,1S,J3};
3, if M ∈ {SL,SL0,L,TL,C2,TC2,aP,aPN,

aP1,aQ,aW,AP,APN,AP1,AQ,AW};
n, if n ≥ 2 and M ∈ {an,anM,anN,An,AnM,AnN}
n+ 1, if n ≥ 2 and M ∈ {aPn,APn};
∞, if M ∈ {a∞,a∞M,a∞N,aP∞,A∞,A∞M,

A∞N,AP∞};

Proof. For clones from the class Θ the proof follows from the description of
the lattice. We refer the reader to [12] for more details. For clones from the
set

{aP,aPN,aP1,aQ,aW,AP,APN,AP1,AQ,AW}

57



the theorem follows from the complete description of all essential predicates
of arity 2 from Inv(right) in Lemma 3.4. Indeed, by Lemma 3.4 we have
Inv(right) ∩ R̃3 ⊆ Shift(B0 ∪Main). Hence

Inv(right) ∩ (R̃1
3 ∪ R̃1

3) ⊆ Shift(B0 ∪B1) ⊆ Inv(a3π0).

So, every clone defined by such predicates contains a3π0, therefore these
clones cannot be defined by predicates of arity 1 and 2.

For clones from the set

{an,anM,anN,An,AnM,AnN}

the theorem follows from the complete description of all essential predicates
in the proof of Theorem 3.26.

For clones aPn,APn, where n ≥ 1, the theorem follows from the proof
of Theorem 3.26.

For clones from the set

{a∞,a∞M,a∞N,aP∞,A∞,A∞M,A∞N,AP∞}

the theorem follows from Lemma 4.24.

Theorem 4.26. Suppose F ∈ Π̃, F 6= {π∅,∅,∅}, then

d(Clone(F )) =

{
max{m+ n | Πm

n ∩ F 6= ∅}, if |F | <∞;

∞, otherwise.

d(Clone({π∅,∅,∅})) = 2.

Proof. For F = {π∅,∅,∅} the proof follows from Lemma 3.11 and the fol-
lowing equation:

Clone({π∅,∅,∅}) = Pol({ρ+1, ρW }).

Assume that F 6= {π∅,∅,∅}, Clone(F ) = Pol(S), where S ⊆ R3. By
Lemma 2.5, it can be assumed that S ⊆ R̃3. It follows from Theorem 4.1 that
the set Shift(F ∪B3) is essentially closed. Hence S ⊆ Shift(F ∪B3). Since
F 6= {π∅,∅,∅}, we see that S ∩ Shift(Π) 6= ∅.

Let F ′ =
⋃

ρ∈Shift(S)∩Π

{σ ∈ Π | σ . ρ}. Hence, we have

Clone(F ) = Pol(S) ⊇ Pol(Shift(F ′ ∪B3)) = Clone(F ′).
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Then, by Theorem 4.4, we get F ⊆ F ′, and this implies

max
ρ∈F

(ar(ρ)) ≤ max
ρ∈F ′

(ar(ρ)) = max
ρ∈S

(ar(ρ)).

This proves that

d(Clone(F )) = max
ρ∈F

(ar(ρ)) = max{m+ n | Πm
n ∩ F 6= ∅}.

4.5 Cardinalities of L↑
3 (F ) and L↓

3(F )

Let us define a mapping ζ : Π → N0 × N. For πA1,...,Am
∈ Πm

n we put
ζ(πA1,...,Am) = (a, b), where a = n − max

i
{|Ai|}, and b is the number of

different setsAj such that |Aj | = max
i
{|Ai|}.We define a linear order on the

set N0 × N in the following way:

(a1, b1) ≤ (a2, b2)⇐⇒ (a1 < a2) ∨ ((a1 = a2) ∧ (b1 ≥ b2)).

The following two lemmas can easily be checked.

Lemma 4.27. Suppose ρ1, ρ2 ∈ Π, ρ1 . ρ2, then ar(ρ1) ≤ ar(ρ2).

Lemma 4.28. Suppose ρ1, ρ2 ∈ Π, ρ1 . ρ2, then ζ(ρ1) ≤ ζ(ρ2).

Theorem 4.29. Suppose F ∈ Π̃, then

|L↓3(Clone(F ))| =

{
2ℵ0 , if F 6= Π;

5, if F = Π.

Proof. Suppose F = Π, then the proof follows from the description of the
lattice. Suppose F 6= Π, then there exists a predicate πA1,...,Am

∈ Πm
n such

that πA1,...,Am
/∈ F. For i, l ∈ N, we put

Bi,l = {j | n < j ≤ l + n, j 6= i+ n},

ρl = πA1,...,Am,B1,l,B2,l,...,Bl,l
.

It can be easily checked that

πA1,...,Am
.2 πA1,...,Am,∅,...,∅ .1 πA1,...,Am,B1,l,B2,l,...,Bl,l

,

hence πA1,...,Am
. ρl. Since F is a downset, we have ρl /∈ F for every l ∈ N.
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Let G = {ρi | i ≥ n+ 2}. For i ≥ n+ 2 we have

ar(ρi) = m+ i+ n+ i, ζ(ρi) = (n+ 1, i).

Hence, it follows from Lemma 4.27 and Lemma 4.28 that G consists of pair-
wise incomparable predicates. Suppose G′ ⊆ G. Put

FG′ = F ∪ {σ ∈ Π | ∃δ ∈ G′ : σ . δ}.

It can be easily checked that FG′ is a nonempty downset. By Corollary 1.2, if
G1 6= G2, then FG1 6= FG2 . Let M = {Clone(FG′) | G′ ⊆ G}. Obviously,
the cardinality of M is continuum and M ⊆ L↓3(Clone(F )). This completes
the proof.

Theorem 4.30. Suppose M ∈ Θ ∪ Φ, then

|L↓3(M)|



= ℵ0, if M ∈ {aP,aPN,aP1,aP2,aP3, . . . ,

AP,APN,AP1,AP2,AP3, . . .};
= 2ℵ0 , if M ∈ {S,S0,C,M,a∞,a∞M,a∞N,

A∞,A∞M,A∞N}
or M ∈

⋃
n≥2

{an,anM,anN,An,AnM,AnN};

<∞, otherwise.

Proof. Suppose

M ∈ {S,S0,C,M,a∞,a∞M,a∞N} ∪ (
⋃
n≥2

{an,anM,anN}).

It follows from Theorem 4.29 that the cardinality of the set L↓3(a∞π0) is
continuum. Since a∞π0 ⊂M, the cardinality of L↓3(M) is also continuum.

The proof for other clones follows from the description of the lattice.

Theorem 4.31. Suppose F ∈ Π̃, then

|L↑3(Clone(F ))|


= 2ℵ0 , if F contains an infinite antichain;

<∞, if |F | <∞;

= ℵ0, otherwise.
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Proof. Suppose F contains an infinite antichain G. Suppose G′ ⊆ G and G′

is not empty. Put

FG′ = {σ ∈ Π | ∃δ ∈ G′ : σ . δ}.

It is easy to prove that FG′ is a nonempty downset. Obviously, if G1 6= G2,

then FG1
6= FG2

. Let M = {Clone(FG′) | ∅ 6= G′ ⊆ G}. Then the
cardinality of M is continuum and M ⊆ L↑3(Clone(F )).

Suppose F is a finite set. Then it follows from the description of the lattice
that L↑3(Clone(F )) is finite.

Suppose F is infinite, but F does not contain an infinite antichain. By The-
orem 4.8, we have an ∈ L↑3(Clone(F )) for every n ∈ {2, 3, . . .}. Therefore,
L↑3(Clone(F )) is at least countable.

Let us prove that the set L↑3(Clone(F )) ∩ Υ is at most countable. Let
F ′ ∈ Π̃, F ′ ⊆ F. Put G = Bound(F ′), F̃ = {ρ̂ | ρ ∈ F}. It can be easily
checked that G ⊆ Bound(F ) ∪ F̃ and

G ∩ Bound(F ) = {ρ̂ ∈ Bound(F ) | ∀σ̂ ∈ G ∩ F̃ : ¬(σ̂ < ρ̂)}.

Hence, the set G is uniquely determined by the set G ∩ F̃ . Since F does
not contain an infinite antichain, the set G ∩ F̃ is finite. Therefore, ev-
ery clone Clone(F ′) is defined by a finite set of predicates. Then the set
L↑3(Clone(F )) ∩ Υ is at most countable. Since the class Θ is finite and the
class Φ is countable, the set L↑3(Clone(F )) is countable.

Let us define a partial order on the set Nn0 . We say that

(a1, . . . , an) ≤ (b1, . . . , bn),

if for every i ∈ {1, 2, . . . , n} either ai = bi = 0, or 0 < ai ≤ bi.

Lemma 4.32. Suppose F ⊆ Nn0 , F is an antichain. Then F is finite.

Proof. The proof is by induction on n. If n = 1 then the proof is trivial.
Assume the converse. Suppose F is infinite. Let

sign(i) =

{
1, if i > 0;

0, if i = 0.
.

To each tuple (a1, . . . , an) from F assign a tuple (sign(a1), . . . , sign(an))

from {0, 1}n. Since the set {0, 1}n is finite, there exists a tuple assigned to
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infinitely many tuples from F . Hence, without loss of generality it can be
assumed that to each tuple from F we assign the same tuple from {0, 1}n.

Suppose α = (a1, . . . , an) ∈ F. Then for every β = (b1, . . . , bn) ∈ F

such that α 6= β we have

b1 < a1 ∨ b2 < a2 ∨ . . . ∨ bn < an.

Hence, there exists i ∈ {1, 2, . . . , n} such that bi < ai for infinitely many
tuples (b1, . . . , bn) from F. Therefore, there exists c < ai such that bi = c

for infinitely many tuples (b1, . . . , bn) from F. Let F0 be the set of all tuples
(b1, . . . , bn) ∈ F such that bi = c. Obviously, by removing i-th element
from every tuple from F0 we obtain an infinite antichain from Nn−1

0 . This
contradicts the inductive assumption.

Lemma 4.33. Suppose F ⊆ Πn, F is an antichain. Then F is finite.

Proof. Let P({1, 2, . . . , n}) be the set of all subsets of {1, 2, . . . , n}. Let
φ : P({1, 2, . . . , n})→ {1, 2, . . . , 2n} be a bijective mapping.

Suppose i ∈ {1, 2, . . . , 2n}, πA1,...,Am
∈ Πm

n . Let ψi(πA1,...,Am
) be the

number of sets Aj such that φ(Aj) = i. Let ω : Πn → N2n

0 ,

ω(ρ) = (ψ1(ρ), ψ2(ρ), . . . , ψ2n(ρ)).

It can be easily checked that if ω(ρ1) ≤ ω(ρ2), then ρ1 .2 ρ2. Therefore, the
set {ω(ρ) | ρ ∈ F} is an antichain. By Lemma 4.32 this set is finite. Hence,
the set F is also finite.

Lemma 4.34. Suppose F ⊆ ΠW , F is an antichain. Then F is finite.

Proof. Assume the converse. Let ρ ∈ F ∩ Πm
n . Since F is infinite, by

Lemma 4.33 there exists σ ∈ F \Πm+n−2. It is easy to show that

ρ . π{1,2,...,n},∅,∅, . . . ,∅︸ ︷︷ ︸
m−1

. π{1,2,...,m+n−1} . σ.

Hence ρ ≤ σ. This contradiction completes the proof.

Lemma 4.35. Suppose ρ ∈ Πm
n , ζ(ρ) = (1, r), r < n − 1, then there exist

ρ′ ∈ Πm+1
n−1 and t > r such that ρ′ . ρ and ζ(ρ′) = (1, t).
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Proof. Suppose ρ = πA1,...,Am . Let S be the set of all i ∈ {1, . . . , n} such
that for every j we have {i} ∪Aj 6= {1, . . . , n}. Since r < n− 1, we obtain
that |S| ≥ 2. Let i1, i2 ∈ S, i1 6= i2. Without loss of generality it can be
assumed that i1 = n− 1, i2 = n. Put A′i = Ai ∩ {1, . . . , n− 1}. Then

πA′1,...,A′m,{1,2,...,n−2} .
3 πA′1,...,A′m,∅ .1 πA1,...,Am

.

It is easy to check that ζ(πA′1,...,A′m,{1,2,...,n−2}) = (1, t), where t > r. This
completes the proof.

Lemma 4.36. Suppose F ∈ Π̃, F 6⊆ (Πn∪ΠW ) for every n ∈ N. Then there
exists an infinite antichain G ⊆ F .

Proof. Let us construct an infinite sequence ρ1, ρ2, ρ3, . . . such that ρi ∈ F,
ar(ρi) < ar(ρi+1) and ζ(ρi) > ζ(ρi+1) for every i ∈ {1, 2, 3, . . .}.

Let ρ1 be an arbitrary predicate from F \ΠW such that ζ(ρ1) = (1, t) for
some t ∈ N. Since F 6⊆ ΠW and F is a downset, ρ1 exists. Suppose we
already have ρ1, ρ2, . . . , ρq , and for every i ∈ {1, 2, . . . , q} we have ζ(ρi) =

(1, ti) for some ti ∈ N. Let r = ar(ρq). Let us define ρq+1.

Let σ ∈ F \ (ΠW ∪ Π3r). Suppose σ ∈ Πm
n . Obviously, there exists

σ0 ∈ Πm
n such that σ0 .3 σ and ζ(σ0) = (1, s) for some s.

We have n > 3r. Using Lemma 4.35 several times for predicate σ0 we
get predicate σ′ such that σ′ . σ0 and ζ(σ′) = (1, t), where t > r > tq.

It is necessary to mention that if we obtain a predicate σ′ ∈ Πm′

n′ such that
ζ(σ′) = (1, t) and t ≥ n′− 1, then we do not apply Lemma 4.35 anymore. It
is easy to check that n′ > 2r in this case.

Obviously, ζ(σ′) < ζ(ρq) and ar(σ′) > ar(ρq). Then we put ρq+1 = σ′.

It follows from Lemma 4.27 and Lemma 4.28 that predicates in this sequence
are pairwise incomparable. This completes the proof.

Theorem 4.37. Suppose F ∈ Π̃, then

|L↑3(Clone(F ))|


<∞, if |F | <∞;

= ℵ0, if |F | =∞, F ⊆ (Πn ∪ΠW ) for some n ∈ N;

= 2ℵ0 , otherwise.

Proof. Suppose F is finite. By Theorem 4.31 we get |L↑3(Clone(F ))| <∞.
Suppose F 6⊆ (Πn ∪ ΠW ) for every n. Then combining Lemma 4.36 and

Theorem 4.31 we obtain that |L↑3(Clone(F ))| = 2ℵ0 .
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Suppose there exists n ∈ N such that F ⊆ Πn ∪ ΠW . Then combining
Lemma 4.33, Lemma 4.34 and Theorem 4.31 we get |L↑3(Clone(F ))| = ℵ0.

Theorem 4.38. Suppose M ∈ Θ ∪ Φ, then

|L↑3(M)|



= ℵ0, if M ∈ {C2,TC2,a∞,a∞M,a∞N,aP,aPN,

A∞,A∞M,A∞N,AP,APN}
or M ∈

⋃
n≥1

{aPn,APn};

= 2ℵ0 , if M ∈ {J3,aP∞,aQ,aW,AP∞,AQ,AW, };
<∞, otherwise.

Proof. For all clones except aPn,APn the proof follows from the descrip-
tion of the lattice and Theorem 4.37. The clones aPn and APn are dual with
respect to the transposition. Hence we consider only aPn.

By Theorem 4.12, aPn ⊂ Clone(F ) iff F ⊆ Πn. Hence, all clones from
L↑3(aPn) except countable number belong to L↑3(Clone(Πn)). Therefore, by
Theorem 4.37 we obtain that L↑3(aPn) is countable.

MAIN NOTATIONS

• N = {1, 2, 3, . . .}.

• N0 = {0, 1, 2, 3, . . .}.

• Ek = {0, 1, 2, . . . , k − 1}.

• Pnk = {f | f : Enk → Ek}.

• Pk =
⋃
n≥1

Pnk .

• Rhk = {ρ | ρ : Ehk → {0, 1}}.

• Rk =
⋃
h≥0

Rhk .

• |M |— the cardinality of the set M .

• [M ] — the closure of M .

• Pol(ρ) — the set of all functions f ∈ Pk that preserve a predicate ρ.
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• Pol(S) =
⋂
ρ∈S

Pol(ρ).

• Inv(f) — the set of all predicates ρ ∈ Rk that are preserved by a
function f.

• Inv(M) =
⋂
f∈M

Inv(f).

• ρ∗ — the predicate that is dual to ρ with respect to the transposition.

• Π̃ — the set of all nonempty downsets of Π.

• Clone(F ) = Pol (F ∪ {ρ+1, ρW }) .

• Clone∗(F ) = Pol (F ∗ ∪ {ρ+1, ρ
∗
W }) .

• Two(a1, . . . , an) — the set of all elements that occur in the tuple
(a1, . . . , an) more than once.

• EΠ — the set of all equivalence classes generated by the quasiorder .
on the set Π.

• BΠ — the set of all antichains of EΠ excluding the one that consists of
the bottom element π̂{∅,∅,∅} only.

• Bound(F ) := {ρ̂ ∈ EΠ | ρ̂ 6⊆ F,∀σ̂ ∈ EΠ(σ̂ < ρ̂ =⇒ σ̂ ⊆ F )}.

• d(A) = min{h | ∃Q ⊆ Rh3 : Pol(Q) = A}.

• L3 = Θ ∪ Φ ∪Υ

• L↑3(F ) := {F ′ ∈ L3 | F ⊆ F ′}.

• L↓3(F ) := {F ′ ∈ L3 | F ′ ⊆ F}.

• ar(ρ) — the arity of a predicate ρ.

• VarValues(ρ, i) = {α(i) | α ∈ ρ}.

• Shift(ρ) — the set of all predicates that can be obtained from ρ by
shifting and permutation of variables.

• Shift(S) =
⋃
ρ∈S

Shift(ρ).

• And(S) — the set of all ρ ∈ Rk that can be presented as a conjunction
of predicates from S.
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• Strike(ρ, i) — the predicate that is obtained from ρ by striking the i-th
row.

• Strike(ρ) — the set of all predicates that can be obtained from ρ by
striking rows.

• Strike(S) =
⋃
ρ∈S

Strike(ρ).

• |α|— the length of α.

• [l(α) = α(|α| − l + 1) . . . α(|α| − 1)α(|α|).

• ]l(α) = α(1)α(2) . . . α(l).

• αs = αα . . . α︸ ︷︷ ︸
s

.

• B0 = {false, true, ρ+1, σ
=
3 , {0}, {1}, {2}, {0, 1}, {0, 2}, {1, 2}}.

• B1 =

{(
0 1

0 1

)
, ρ≤, ρ∨,2, ρN , ρW

}
.

• B2 — the set of all predicates ρ ∈ Inv(right) such that for every
i ∈ {1, 2, . . . , ar(ρ)} we have VarValues(ρ, i) ⊆ {0, 1}.

• Main— set of all predicates ρ ∈ R3 such that the following conditions
hold for some m ∈ {1, . . . , ar(ρ)} :

1. VarValues(ρ, i) ⊆ {0, 1} for every i ∈ {1, 2, . . . ,m}.

2. For every am+1, . . . , aar(ρ) ∈ E3 we have

ρ(1, . . . , 1, am+1, . . . , aar(ρ)) = 1.

• σ=
k =

(
0 1 . . . k

0 1 . . . k

)
• false — the predicate of arity 0 that takes on value 0.

• true — the predicate of arity 0 that takes on value 1.
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