Синтез информационных графов для предполных классов булевых функций

Ю. Шуткин

Рассматривается задача реализации булевых функций с помощью информационных графов. Построены методы синтеза и получены некоторые оценки сложности для реализации графами с различными базовыми множествами. Рассмотрены специфики предполных классов булевых функций.

1. Введение

Задача реализации булевых функций с помощью информационных графов ставится для того, чтобы получить возможность оценивать некоторые дополнительные характеристики управляющих систем нежели только объем, как это делается в реализации булевых функций контактными схемами. Сложность информационного графа характеризует такие величины, как нагреваемость схемы, составленной из контактов, скорость вычисления схемы (функционирование) при моделировании схемы на компьютере. Понятие информационного графа вводится в [1].

Случай, когда информационный граф по сути является контактной схемой со стандартным набором контактов — контактов с переменными и их отрицаниями, рассмотрен в [2, 3]. Получены оценки сложности для функций Шеннона и для почти всех булевых функций в различных классах. Причем нижние и верхние оценки отличаются не более, чем на множитель (имеют один и тот же порядок).

В связи с этим возникает желание модифицировать базовое множество и исследовать возможность улучшения или уточнения этих оценок.

Будем рассматривать как базовые множества, состоящие из меньшего числа функций, так и дополненные базовые множества. Сокращенные базовые множества могут пригодиться, когда хочется упростить систему базовых элементов, если ее раздувание будет вести, например, к уменьшению стабильности схемы. Добавлением же новых базовых функций можно добиться уменьшения сложности остальных булевых функций, если на практике имеется возможность с небольшими затратами реализовать эти базовые элементы.

Можно использовать реализации булевых функций с помощью контактных схем и оценивать сразу два функционала сложности для каждой структуры, или совокупность и баланс этих функционалов.

Получены основные оценки сложности в предполных классах булевых функций, такие как оценка функции Шеннона сложности реализации функций из данного класса информационными графами и информационными деревьями. Также для почти всех булевых функций получен порядок сложности реализации их информационными графами и деревьями.

Результаты данной работы частично анонсированы в [5].

Автор выражает благодарность профессору Э. Э. Гасанову за постановку задачи и помощь в работе.

2. Постановка задачи и формулировка результатов

Введем основные понятия, которыми мы будем оперировать. Первоначально эти понятия вводятся в [2, 3].

Информационным графом G с базовым множеством $F=\{f_1,f_2,\ldots,f_m\}$ будем называть сеть с несколькими выделенными вершинами (одна начальная и несколько конечных), в которой все ребра ориентированы от начальной вершины к конечным, и ребрам приписаны предикаты из множества F (по сути, если отождествить все конечные вершины и взять в качестве базового множества $F_0=\{x_1,\bar{x}_1,x_2,\bar{x}_2,\cdots,x_n,\bar{x}_n\}$, то определение совпадает с определением ориентированной контактной схемы в [4], с той лишь разницей, что сложность графа задается по-другому).

Считается, что ребро с предикатом x_i^{σ} проводит запрос $\alpha = (\alpha_1, \alpha_2, \dots, \alpha_n) \in \{0, 1\}^n$ тогда и только тогда, когда $\alpha_i = \sigma$.

Говорим, что запрос $\alpha \in \{0,1\}^n$ проходит из вершины v_1 в вершину v_2 (или вершина v_2 достижима из v_1 на запросе α), если существует ориентированный путь из v_1 в v_2 , такой, что все ребра этого пути проводят запрос α .

Обозначим множество вершин, достижимых из v_1 на запросе α , через $\theta_{v_1}(\alpha)$. Множество конечных вершин w_j обозначим через W. Начальную вершину будем обозначать v_0 .

Информационное дерево — информационный граф, который имеет структуру дерева, то есть в нем нет циклов.

Для информационного дерева потребуем, чтобы все конечные вершины были листьями дерева. Высотой дерева будем считать максимальный путь из начальной вершины в конечную.

Информационный граф G реализует булеву функцию $f(x_1,x_2,\ldots,x_n)$ если любой набор $\alpha\in\{0,1\}^n$, на котором функция принимает значение 1, проходит из начальной вершины графа G в одну из конечных вершин, то есть $\theta_{v_0}(\alpha)\cap W\neq\varnothing$, и любой набор $\beta\in\{0,1\}^n$, на котором функция принимает значение 0, не проходит ни в одну из них, то есть $\theta_{v_0}(\alpha)\cap W=\varnothing$. Множество графов, реализующих функцию f обозначим через U(f).

Более общее определение информационного графа и его функционирования можно найти в [1].

Сложностью графа на запросе α назовем количество предикатов, вычисленных на этом запросе.

Количество предикатов, вычисленных на запросе α в графе G считается следующим образом. Помечаются все вершины, в которые проходит запрос α . Считаем, что в вершине v вычисляются те предикаты, которые приписаны ребрам, выходящим из этой вершины. Общее количество вычисленных предикатов на запросе α равно сумме по всем помеченным вершинам вычисленных в них предикатов, то есть

$$L(G,\alpha) = \sum_{v \in \theta_{v_0}(\alpha)} \psi(v),$$

где $\psi(v)$ — количество ребер, выходящих из v (степень исхода вершины v).

Пусть на множестве запросов введено вероятностное пространство. Сложностью информационного графа назовем величину

$$L(G) = \sum_{\alpha \in \{0,1\}^n} L(G,\alpha)P(\alpha) = E_{\alpha}(L(G,\alpha)),$$

где $P(\alpha)$ — вероятность запроса α в нашем вероятностном пространстве

Далее будем по умолчанию считать, что распределение равномерное, то есть вероятности появления всех запросов равны.

Сложностью функции назовем нижнюю грань сложности графов, реализующих эту функцию.

$$L(f) = \inf_{G \in U(f)} L(G).$$

Через $K^{(n)}$ обозначим множество всех булевых функций из класса K, зависящих от переменных x_1, x_2, \ldots, x_n .

Функцией Шеннона сложности реализации булевых функций n переменных информационными графами в классе K назовем максимальную сложность функций из $K^{(n)}$.

$$L^{Sh}(n) = \max_{f \in K^{(n)}} L(f).$$

Определим также сложность реализации булевой функции с помощью информационных деревьев и функцию Шеннона для древовидных информационных графов.

Сложность реализации функции деревом определим как

$$L_D(f) = \inf_{G \in D(f)} L(G),$$

где D(f) — множество деревьев, реализующих функцию f. Функцию Шеннона в классе деревьев определим как

$$L_D^{Sh}(n) = \max_{f \in K^{(n)}} L_D(f).$$

В данной работе рассмотрен случай обобщенного базового множества, когда в качестве F берется некоторое модифицированное множество, а не F_0 . Приведены некоторые методы синтеза графов с такими множествами.

Получена верхняя оценка сложности реализации информационными графами и деревьями для почти всех $f \in M_2^{(n)}$:

$$L(f,F) \lesssim 2\sqrt{n}$$

при $n\to\infty$, для базового множества $F=\{x_i,\bar{x}_i,l(x),h(x),\bar{l}(x)\}$, где l(x),h(x) — некоторые конкретные функции.

Также исследованы предполные классы булевых функций и для них получены оценки функций Шеннона и порядок сложности для почти всех функций.

Получена оценка сложности реализации монотонных функций информационными деревьями с монотонным базисом, то есть с базовым множеством x_1, x_2, \ldots, x_n .

3. Информационные графы с обобщенным базовым множеством

Предположим, что у нас в распоряжении имеются не только переменные и их отрицания в качестве базовых функций, а также еще какой-то произвольный набор функций, пока что не фиксированный.

Попытаемся понять, какими должны быть эти функции, чтобы, используя их вместо обычных переменных в построении графа, можно было бы снизить сложность всех остальных функций.

Во-первых, понятно, что если у нас в базовом множестве F есть все функции k переменных ($k \ge 1$), то мы можем реализовать все функции n переменных со сложностью не большей 2(n-k)+1. Для этого используем разложение по переменным, которое было рассмотрено в [3]. Будем раскладывать произвольную функцию до тех пор, пока не получим подфункцию, зависящую от k переменных. А она уже есть в нашем базовом множестве. Таким образом, легко посчитав сложность, получим как раз верхнюю оценку:

$$L(f, F) \leqslant 2(n - k) + 1.$$

С одной стороны, все функции k переменных, когда k по порядку не отличается от n, это довольном много, но все-таки попробуем оценить, сколько же их понадобится для того, чтобы снизить верхнюю оценку сложности например до $2\varepsilon n$.

Для этого k должно быть равно $(1-\varepsilon)n$. То есть всего функций k переменных будет $2^{2^{(1-\varepsilon)n}}$.

Можно заметить, что это есть $o(2^{2^n})$. А именно $\frac{2^{2^{(1-\varepsilon)n}}}{2^{2^n}}=2^{2^{n-\varepsilon n}-2^n}=2^{2^n(2^{-\varepsilon n}-1)},$ что довольно быстро стремится к нулю при $n\to\infty$.

Рассмотрим теперь несколько другой способ реализации функций с помощью графов с обобщенным базовым множеством. Назовем его методом окружения. Будем пользоваться свойством, что если $h(x)\geqslant f(x)\geqslant l(x)$, то имеет место равенство $f(x)=l(x)\vee \bar{l}(x)h(x)f(x)$. Действительно, если на наборе α функция l принимает значение 1, то и функция f примет значение 1, а если $l(\alpha)=0$, то $f(\alpha)=h(\alpha)f(\alpha)$, так как $h(x)\geqslant f(x)$.

Используем это разложение для построения графа, реализующего функцию f. Если в базовом множестве F есть такие функции h и l, что $h(x) \geqslant f(x) \geqslant l(x)$, то граф G будет выглядеть следующим образом. Из корня выходит два ребра, которым приписаны l(x) и $\bar{l}(x)$. Ребро с l(x) ведет в конечную вершину w_1 . А на конце ребра с $\bar{l}(x)$ строим последовательно ребро с функцией h(x) и какой-то граф, реализующий функцию f(x), например бинарное дерево.

Тогда наш граф будет реализовывать функцию f(x) и иметь сложность не больше $2+2^{-n}N_0(l)+2^{-n}(2^n-N_1(l)-N_1(h))(2n-1)$.

Значит, нужно подобрать из базового множества две функции l(x) и h(x) с минимальной величиной $2^n-N_1(l)-N_1(h)$, которые заключают между собой функцию f(x).

Рассмотрим все функции, у которых $2^n(\frac{1}{2}+\varepsilon)$ или $2^n(\frac{1}{2}-\varepsilon)$ единиц. Это множество, объединенное с F_0 , и будет нашим новым базовым множеством. Несложно показать, что почти все функции заключены между какими-то двумя из этого множества (между какой-то функцией h(x) с $2^n(\frac{1}{2}+\varepsilon)$ единицами и какой-то функцией l(x) с $2^n(\frac{1}{2}-\varepsilon)$ единицами).

Также видно, что сложность любой функции будет не больше

$$2 + 2^{-n}N_0(l) + 2^{-n}(2^n - N_1(l) - N_1(h))(2n - 1) \le$$

$$\le 2 + 1 + (1 - 1 + 2\varepsilon)(2n - 1) \simeq 4\varepsilon n.$$

Оценим количество функций в нашем базовом множестве. Их количество асимптотически равно

$$2 \cdot C_{2^n}^{2^n(\frac{1}{2}+\varepsilon)} \sim \frac{2^{2^n+1}}{\sqrt{\pi 2^{n-1}}} (1-\varepsilon^2)^{2^n-1}.$$

Если отнести это число к числу всех функций, получим

$$\frac{2}{\sqrt{\pi 2^{n-1}}} (1 - \varepsilon^2)^{2^n - 1},$$

что стремится к нулю при $n\to\infty$, но медленнее, чем $2^{2^n(2^{-\varepsilon n}-1)}$, что получается при первом способе построения.

4. Оценки сложности для предполных классов

Рассмотрим теперь отдельно предполные классы булевых функций.

Очевидно, что для любых предполных классов из P_2 справедлива та же верхняя оценка, что и для всего P_2 , так как тот же метод синтеза дает нам эту сложность. А именно,

Лемма 1. Для любой функции n переменных f из класса T_0 (T_1, L, S, M) имеем

$$L(f) \leq 2n - 1$$
.

Эта лемма аналогична лемме для P_2 , доказанной в [3].

Кроме того, для всех замкнутых классов, содержащих функцию $\bigoplus_{i=1}^n x_i$ (или $\bigoplus_{i=1}^n x_i \oplus 1$, для нее верны все те же самые рассуждения), имеем и такие же нижние оценки функции Шеннона для деревьев и графов как и для класса всех булевых функций. А именно, справедливы леммы

Лемма 2. Функция Шеннона сложности реализации функций n переменных из класса T_0 (T_1, L) c помощью информационных деревьев удовлетворяет неравенству

$$L_D^{Sh}(n) \geqslant 2n - 1.$$

Лемма 3. Функция Шеннона сложности реализации функций n переменных из класса T_0 (T_1,L) c помощью информационных графов удовлетворяет неравенству

$$L^{Sh}(n) \geqslant \frac{3n-1}{2}.$$

Среди предполных остается рассмотреть S и M.

Рассмотрим класс самодвойственных функций $S^{(n)}$. Если n нечетно, то в этом классе есть функция $\bigoplus_{i=1}^n x_i$ и оценка Шеннона вновь будет такой же, как и для всех функций. То есть для деревьев это будет

$$L_D^{Sh}(n) = 2n - 1,$$

а для графов

$$\frac{3n-1}{2} \leqslant L^{Sh}(n) \leqslant 2n-1.$$

Пусть теперь n четно. Тогда в нашем классе $S^{(n)}$ есть функция (n-1)-й переменной $\bigoplus_{i=1}^{n-1} x_i$. И ее сложность не меньше 2n-3 для деревьев и $\frac{3n-4}{2}$ для графов. Таким образом, функции Шеннона для этого класса оцениваются так:

$$2n - 3 \leqslant L_D^{Sh}(n) \leqslant 2n - 1$$

И

$$\frac{3n-4}{2} \leqslant L^{Sh}(n) \leqslant 2n-1.$$

Для монотонных функций мы можем получить только более слабые нижние оценки. А именно, функции Шеннона сложности реализации булевых монотонных функций графами и деревьями оцениваются следующим образом. Возьмем функцию $f_{mid}(x)$, у которой ровно половина единиц, все верхние нули находятся на одном слое и все нижние единицы тоже на одном слое.

Введем вспомогательные функции ζ_h , h=0,1 на множестве булевых функций. $\zeta_h(f)=k$ тогда и только тогда, когда существует набор индексов i_1,\ldots,i_k и набор $\alpha_{i_1},\ldots,\alpha_{i_k}$ такой, что

 $f(*,\ldots,*,\alpha_{i_1},*,\ldots,*,\alpha_{i_k},*,\ldots,*)=h$, другими словами это означает, что при подстановке в функцию вместо k переменных значений α_{i_j} получается подфункция n-k переменных, которая есть тождественная константа k. Причем для k-1 такого набора $\alpha_{i_1},\ldots,\alpha_{i_l}$ уже не существует. То есть это минимальное k, при котором выполнено свойство.

Далее, положим $\zeta(f) = \min(\zeta_0(f), \zeta_1(f))$. В [3] доказаны следующие леммы:

Поммо 4. Лад адомености тединации том дост

Лемма 4. Для сложности реализации произвольной функции п переменных с помощью информационных деревьев справедлива оценка

$$L_D(f) \ge 2^{-n} \Big(N_0(f) \Big(2\zeta(f) - 1 \Big) + N_1(f) \Big(2\zeta(f) - 1 \Big) \Big) = 2\zeta(f) - 1,$$
 (1)

где $N_0(f)$ и $N_1(f)$ — количество нулей и единиц функции соответственно.

Лемма 5. Для произвольной функции п переменных имеем

$$L(f) \geqslant 2^{-n} \Big(\zeta(f) N_0(f) + (2\zeta(f) - 1) N_1(f) \Big).$$
 (2)

Для функции f_{mid} значения $\zeta_1(f_{mid})$ и $\zeta_0(f_{mid})$ равны $\lceil \frac{n}{2} \rceil$.

Тогда, используя приведенные нижние оценки, видим, что функции Шеннона сложности реализации монотонных функций деревьями и графами оцениваются следующим образом:

$$2\lceil \frac{n}{2} \rceil - 1 \leqslant L_D^{Sh}(n) \leqslant 2n - 1$$

И

$$\frac{3\lceil \frac{n}{2} \rceil - 1}{2} \leqslant L^{Sh}(n) \leqslant 2n - 1$$

соответственно.

Суммируя все рассуждения и объединяя их с леммами $1,\ 2,\ 3,$ получаем теорему:

Теорема 1. Оценка функций Шеннона сложности реализации функций п переменных с помощью информационных графов и деревьев

для классов T_0 , T_1 , $S^{(n=2m+1)}$, L:

$$\frac{3n-1}{2} \leqslant L^{Sh}(n) \leqslant 2n-1, L_D^{Sh}(n) = 2n-1;$$

для класса $S^{(n=2m)}$:

$$\frac{3n-4}{2} \leqslant L^{Sh}(n) \leqslant 2n-1, 2n-3 \leqslant L_D^{Sh}(n) \leqslant 2n-1;$$

 ∂ ля класса M:

$$\frac{3\lceil \frac{n}{2} \rceil - 1}{2} \leqslant L^{Sh}(n) \leqslant 2n - 1,$$
$$2\lceil \frac{n}{2} \rceil - 1 \leqslant L_D^{Sh}(n) \leqslant 2n - 1.$$

Теперь получим порядок сложности для почти всех булевых функций в предполных классах.

Для предполных классов T_0, T_1, S справедливы порядковые оценки, полученные в [3] для почти всех булевых функций. А именно

Лемма 6. Для почти всех функций $f \in T_0^{(n)}(T_1^{(n)},S^{(n)})$ имеем

$$L_D(f) \sim 2n, \ n \to \infty,$$

 $L(f) \approx n, \ n \to \infty.$

Для класса линейных функций вообще все ясно, сложность любой линейной функции f_l от n переменных оценивается так:

$$\frac{3n-1}{2} \leqslant L(f_l) \leqslant 2n-1$$

И

$$L_D(f_l) = 2n - 1.$$

Для монотонных функций, используя оценки (1) и (2), а так же принимая во внимание тот факт, что почти у всех монотонных функций верхние нули и нижние единицы лежат на 3-х (для четных <math>n) или

4-х (для нечетных n) средних слоях булева куба (доказательство приведено в [6]), получаем следующий порядок сложности реализации информационными графами и деревьями для почти всех монотонных булевых функций f_m :

$$L(f_m) \simeq n,$$

 $L_D(f_m) \simeq n$

при $n \to \infty$.

А именно, для любого $\varepsilon \in (0,1)$ начиная с некоторого $n > n_0$ имеем

$$(1 - \varepsilon)\frac{n}{2} \leqslant L(f_m) \leqslant 2n - 1,$$

$$(1 - \varepsilon)n \leqslant L_D(f_m) \leqslant 2n - 1.$$

Суммируя все вышесказанное, мы может сформулировать теорему:

Теорема 2. Для почти всех булевых функций f из классов $T_0^{(n)}, T_1^{(n)}, S^{(n)}$ имеем

$$L(f) \approx n, \ n \to \infty,$$

 $L_D(f) \sim 2n, \ n \to \infty.$

Для всех булевых функций f из класса $L^{(n)}$ имеем

$$\frac{3n-1}{2} \leqslant L(f) \leqslant 2n-1,$$

$$L_D(f) = 2n-1.$$

Для почти всех булевых функций f из класса $M^{(n)}$ имеем

$$L(f) \approx n, \ n \to \infty,$$

 $L(f) \approx n, \ n \to \infty.$

Рассмотрим теперь более подробно класс монотонных булевых функций. Попробуем взять другое базовое множество для наших графов и деревьев.

Логично рассмотреть монотонный базис, то есть мы отказываемся от переменных с отрицаниями, и теперь базовое множество будет выглядеть так: $F_0^M = \{x_1, x_2, \dots, x_n\}$.

Теорема 3. Функция Шеннона сложности реализации монотонных булевых функций деревьями в монотонном базисе удовлетворяет неравенству

$$L_D^{Sh}(n, F_0^M) \gtrsim \frac{2^{\frac{n}{2}}}{\sqrt{\pi n}}.$$

Доказательство. Рассмотрим функцию $f_{mid}(x)$, которую мы рассматривали чуть выше. В ней все нижние единицы расположены на $\lceil \frac{n}{2} \rceil$ -м слое. Их количество для четного n равно $\frac{1}{2}C_n^{\frac{n}{2}}$ (половина среднего слоя), а для нечетного $-C_n^{\frac{n+1}{2}}$ (слой чуть выше середины).

Любое дерево, реализующее эту функцию, таким образом, имеет как минимум $\frac{1}{2}C_n^{\frac{n}{2}}$ (соответственно $C_n^{\frac{n+1}{2}}$ для нечетных n) конечных вершин и столько же различных путей, начинающихся в начальной вершине и заканчивающихся в конечных вершинах.

Покажем, что длина каждого такого пути в дереве ровно $\lceil \frac{n}{2} \rceil$. Действительно, чтобы запрос α , который является нижней единицей функции f_{mid} , прошел по такому пути, на пути должно быть не больше $\lceil \frac{n}{2} \rceil$ ребер с разными предикатами из F_0^M . Но меньше их тоже не может быть, так как тогда бы существовал набор меньшей длины, который тоже бы проходил в ту же конечную вершину, а это противоречит тому, что α — нижняя единица. Наконец, ребра с повторяющимися предикатами в дереве можно просто удалить. Таким образом получаем, что длина всех путей, соответствующих нижним единицам, равна $\lceil \frac{n}{2} \rceil$.

Посчитаем сложность всех конечных ребер в этих путях. То есть тех ребер, которые входят в конечные вершины. Сложность каждого из них, очевидно, равна $2^{-\left\lceil\frac{n}{2}\right\rceil+1}$, так как они все выходят с $(\left\lceil\frac{n}{2}\right\rceil-1)$ -го яруса. Их количество, как мы посчитали, не меньше $\frac{1}{2}C_n^{\frac{n}{2}}$ (соответственно $C_n^{\frac{n+1}{2}}$ для нечетных n). Таким образом, суммарная их сложность, а вместе с ней и сложность всей функции, будет удовлетворять неравенству

$$L(f_{mid}, F_0^M) \gtrsim 2^{-\lceil \frac{n}{2} \rceil} C_n^{\lceil \frac{n}{2} \rceil} \gtrsim 2^{-\lceil \frac{n}{2} \rceil} \sqrt{\frac{2}{\pi n}} 2^n \geqslant \sqrt{\frac{1}{\pi n}} 2^{\frac{n}{2}}.$$

Теорема доказана.

Таким образом, мы видим, что даже тривиальный метод дает экспоненциальную нижнюю оценку функции Шеннона для деревьев. Это означает, что немонотонный базис все-таки существенно позволяет сократить вычислительную сложность монотонных функций.

Вспомним теперь метод окружения, который был предложен в разделе 3.

В качестве обобщенного базового множества возьмем F_0 и три дополнительные функции: $l_m(x)$, у которой все нижние единицы на $(\lfloor \frac{n}{2} \rfloor - 1)$ -м слое, а все верхние нули на $(\lfloor \frac{n}{2} \rfloor - 2)$ -м, $h_m(x)$, у которой все нижние единицы на $(\lceil \frac{n}{2} \rceil + 2)$ -м слое, а все верхние нули на $(\lceil \frac{n}{2} \rceil + 1)$ -м, и отрицание первой функции $\bar{l}_m(x)$.

Мы уже знаем, что почти у всех монотонных функций верхние нули и нижние единицы расположены на трех(в случае четного n) или четырех (в случае нечетного n) средних слоях.

Несложно посчитать, что сложность произвольной функции, которая заключена между $l_m(x)$ и $h_m(x)$, при таком базовом множестве гарантированно уменьшится до $\sim \frac{2n}{\sqrt{n}} = 2\sqrt{n}, \, n \to \infty$. Здесь $\frac{1}{\sqrt{n}}$ — как раз вероятность того, что запрос пройдет на какой-то из трех (четырех в случае нечетного n) средних рядов.

Таким образом, справедлива

Теорема 4. Сложность реализации информационными графами (деревьями) с базовым множеством $F = F_0 \cup \{l_m(x), \bar{l}_m(x), h_m(x)\}$ для почти всех $f \in M_2^{(n)}$ удовлетворяет неравенству

$$L(f,F) \lesssim 2\sqrt{n}$$

 $npu \ n \to \infty$.

Список литературы

[1] Гасанов Э.Э., Кудрявцев В.Б. Теория хранения и поиска информации. М.: Изд-во Физматлит, 2002.

- [2] Шуткин Ю. С. Реализация булевых функций с помощью информационных графов // Материалы IX Международной конференции «Интеллектуальные системы и компьютерные науки». Т. 1. Ч. 2. 2006. С. 323–326.
- [3] Шуткин Ю.С. О реализации булевых функций информационными графами // Дискретная математика, в печати.
- [4] Лупанов О. Б. Асимптотические оценки сложности управляющих систем // М.: Изд-во МГУ, 1984.
- [5] Шуткин Ю. С. О реализация булевых функций информационными графами // Материалы IX Международного семинара «Дискретная математика и ее приложения», посвященного 75-летию со дня рождения академика О. Б. Лупанова. 2007. С. 147–149.
- [6] Коршунов А.Д. О числе монотонных булевых функций // Проблемы кибернетики. Т. 38. 1981.