О приложениях некоторых линейных процедур распознавания

Азар Шайеб

В классе метрических алгоритмов распознавания выделяется подкласс линейных метрических алгоритмов. Типичным представителем этого класса является алгоритм H [6], основанный на метрике Хэмминга в пространстве бинарных признаков.

Усиленным вариантом такого алгоритма является предлагаемый в статье алгоритм \mathcal{A} . Помимо самой процедуры распознавания, этот алгоритм также включает в себя процедуру проверки и формирования свойств слабой и сильной \mathcal{A} -отделимости эталонных множеств. Он определяет число ошибок, при которых распознавание остается устойчивым, а также включает в себя процедуру сокращения исходного пространства признаков.

Введение

Создание вычислительных машин и связанное с этим ускоренное развитие математических теорий, в том числе математической кибернетики и дискретной математики позволило ставить и решать новые задачи, до недавнего времени находившиеся исключительно в компетенции человека. Одной из таких фундаментальных задач является рассматриваемая в настоящей работе задача распознавания образов.

В общем виде эта задача может быть сформулирована следующим образом: необходимо отнести предъявленный объект, определяемый некоторой совокупностью своих признаков, к одному из нескольких непересекающихся классов-образов. В том или ином виде данная задача решается человеком практически во всех сферах его деятельности.

Первые математические работы по данной задаче и реализованные на их основе технические системы появились во второй половине XX века и с тех пор активно используются во многих областях науки и техники, таких как геология, медицина, военное дело, социально-политические исследования и многое другое.

В работах по теории распознавания образов рассматриваются различные подходы к этой задаче. В частности, распознающие системы могут делиться по тому, доступны ли системе примеры объектов, принадлежащих к тому или иному классу (такие системы называются системами распознавания с обучением) или нет (системы распознавания без обучения). Другим критерием, по которому можно классифицировать такие системы, является принцип построения решающего правила. Исторически одними из первых и интуитивно наиболее понятных распознающих систем являлись линейные распознающие системы. В таких системах каждый объект представляется как точка в некотором многомерном пространстве, а решающее правило представляется в виде совокупности поверхностей, отделяющих области этого пространства, соответствующие различным классам. Простейшим случаем такой разделяющей поверхности является гиперплоскость. Системы, основанные на таком подходе, в литературе принято называть линейными распознающими системами.

В настоящей работе рассматривается линейная распознающая система с обучением.

Дальнейшее изложение будет организовано следующим образом.

В §1 будут изложены необходимые определения и обозначения. В §2 будет коротко описан базовый алгоритм распознавания H. В §3 будет предложен усовершенствованный алгоритм \mathcal{A} , позволяющий, помимо прочего, производить сокращение пространства признаков, не ухудшающее качество распознавания. Завершает работу описание приложений данного алгоритма, направления дальнейших исследований и список литературы.

1. Основные определения и обозначения

Введем некоторые обозначения, которые понадобятся нам для дальнейшего изложения:

 $E = \{0,1\};$ $D = \{-1,1\};$ $\bar{D} = [-1,1];$ E^n, D^n, \bar{D}^n — соответствующие n-мерные кубы в пространстве $\mathbb{R}^n;$

$$ho(\tilde{\alpha}, \tilde{\beta})$$
 — метрика, порожденная нормой $|\bar{x}| = \sum_{i=1}^n x_i, \quad \bar{x} = (x_1, \dots, x_n) \in \mathbb{R}^n;$

 $||\bar{x}||$ — евклидова норма для $\bar{x} \in \mathbb{R}^n$;

 (\bar{x},\bar{y}) — скалярное произведение векторов \bar{x} и \bar{y} в \mathbb{R}^n .

|M| — мощность множества M.

Сформулируем теперь необходимые определения. Всюду далее в этом разделе, если не оговаривается противное, предполагается, что $\tilde{\alpha} \in E^n$, $\tilde{\beta} \in E^n$, $M, M_1, M_2 \subseteq E^n$.

Величина

$$d(M) = \max_{\tilde{\alpha}, \tilde{\beta} \in M} \rho(\tilde{\alpha}, \tilde{\beta})$$

называется диаметром множества М.

Величина

$$\rho(M_1, M_2) = \min_{\tilde{\alpha} \in M_1, \tilde{\beta} \in M_2} \rho(\tilde{\alpha}, \tilde{\beta})$$

называется расстоянием между множествами M_1 и M_2 .

Пусть $\alpha, \beta \in E^n$. Положим

$$\gamma(\tilde{\alpha}, \tilde{\beta}) = n - \rho(\tilde{\alpha}, \tilde{\beta}).$$

Очевидно, что $\gamma(\tilde{\alpha},\tilde{\beta})$ равно числу координат, в которых наборы $\tilde{\alpha},\tilde{\beta}$ совпадают.

Величина

$$\gamma(\tilde{\boldsymbol{\alpha}}, M) = \sum_{\tilde{\boldsymbol{\beta}}_i \in M} \gamma(\tilde{\boldsymbol{\alpha}}, \tilde{\boldsymbol{\beta}}_i)$$

называется числом голосов набора α относительно множества M.

Величина

$$\Gamma(\tilde{\alpha}, M) = \frac{\gamma(\tilde{\alpha}, M)}{|M|}$$

называется средним числом голосов набора α относительно множества M.

Величина

$$\rho(\tilde{\boldsymbol{\alpha}}, M) = \sum_{\tilde{\boldsymbol{\beta}}_i \in M} \rho(\tilde{\boldsymbol{\alpha}}, \tilde{\boldsymbol{\beta}}_i)$$

называется расстоянием между набором α и множеством M. Величина

$$\mathcal{P}(\tilde{\alpha}, M) = \frac{\rho(\tilde{\alpha}, M)}{|M|}$$

называется средним расстоянием от набора lpha до множества M . Очевидно, что при $\alpha \in E^n$ И $M \subseteq E^n$ имеет место

$$\Gamma(\tilde{\alpha}, M) = n - \mathcal{P}(\tilde{\alpha}, M).$$

2. Постановка задач и основные алгоритмы

Перейдем теперь к формальной постановке задачи классификации с эталонами в рамках комбинаторно-логического подхода к решению задач типа распознавания [1], [2].

2.1. Задача распознавания

Пусть K_1 и K_2 — два класса строк вида $(x_1, \ldots, x_n), x_i \in E, i =$

 $1,\dots,n$. Номер i величины x_i будем называть признаком. Пусть $L_1=\{\tilde{\alpha}_1^{(1)},\dots\tilde{\alpha}_{m_1}^{(1)}\}\subseteq K_1,\quad L_2=\{\tilde{\alpha}_1^{(2)},\dots\tilde{\alpha}_{m_2}^{(2)}\}\subseteq K_2$. Множества L_1 и L_2 называем материалом обучения.

Требуется, исходя из множеств L_1 и L_2 , указать решающее правило \to , такое, что при $\alpha \in K_1 \cup K_2$ выполнено

$$\tilde{\alpha}
ightarrow \left\{ egin{array}{ll} K_1, & ext{если } \tilde{lpha} \in K_1; \\ K_2, & ext{если } \tilde{lpha} \in K_2. \end{array}
ight.$$

Эта задача называется задачей распознавания с обучением.

Eсли $\overset{\sim}{lpha} \to K_1$, но $\overset{\sim}{lpha}
otin K_1$ или $\overset{\sim}{lpha} \to K_2$, но $lpha
otin K_2$, говорят, что произошла ошибка распознавания.

2.2. Н-отделимость

Рассмотрим алгоритм H, задаваемый следующим правилом:

$$\tilde{\alpha} \to \begin{cases} K_1, & \text{если } \Gamma(\tilde{\alpha}, L_1) > \Gamma(\tilde{\alpha}, L_2) \\ K_2, & \text{если } \Gamma(\tilde{\alpha}, L_1) < \Gamma(\tilde{\alpha}, L_2) \\ \text{не определено}, & \text{если } \Gamma(\tilde{\alpha}, L_1) = \Gamma(\tilde{\alpha}, L_2) \end{cases}$$
 (*)

Эти условия, соответственно, эквивалентны таким

$$\begin{split} \mathcal{P}(\tilde{\alpha}, L_1) &< \mathcal{P}(\tilde{\alpha}, L_2); \\ \mathcal{P}(\tilde{\alpha}, L_1) &> \mathcal{P}(\tilde{\alpha}, L_2); \\ \mathcal{P}(\tilde{\alpha}, L_1) &= \mathcal{P}(\tilde{\alpha}, L_2). \end{split}$$

Множества K_1 и K_2 называются слабо H-разделимыми (посредством L_1 и L_2), если для $L_1 \subseteq K_1$ и $L_2 \subseteq K_2$ алгоритм H все элементы из множества $L_1 \cup L_2$ правильно относит κ L_1 и L_2 .

Множества K_1 и K_2 называются сильно H-разделимыми, если для любых непустых $L_1 \subseteq K_1$, $L_2 \subseteq K_2$ множества K_1 и K_2 слабо H-разделимы (посредством L_1 и L_2).

Можно доказать следующее утверждение.

Теорема 1 ([6]). Если $M_1, M_2 \subseteq E^n, |M_i| = m_i, mo$

 $a) \ M_1 \ u \ M_2 \ {\it c.naбo} \ H$ -разделимы, npu

$$\frac{d(M_i)}{\rho(M_1, M_2)} < \frac{m_i}{m_i - 1}, \qquad i = 1, 2;$$

 δ) M_1 и M_2 сильно H-разделимы, npu

$$\frac{d(M_i)}{\rho(M_1, M_2)} < 1, \qquad i = 1, 2.$$

2.3. Линейная отделимость

Пусть в E^n задана гиперплоскость G вида $(\tilde{\alpha}, x + \tilde{\beta}) = 0$, $\tilde{\alpha}, \tilde{\beta} \in \mathbb{R}^n$. Будем говорить, что $\tilde{\gamma} \in E^n$ лежит в верхнем полупространстве, если $(\tilde{\alpha}, \tilde{\gamma} + \tilde{\beta}) > 0$; в нижнем полупространстве, если $(\tilde{\alpha}, \tilde{\gamma} + \tilde{\beta}) > 0$ $\tilde{\beta}$) < 0. В том случае, если $(\tilde{\alpha}, \tilde{\gamma} + \tilde{\beta}) = 0$, считаем, что положение $\tilde{\gamma}$ не определено.

Говорят, что множества $M_1, M_2 \in E^n$ линейно отделимы, если существует гиперплоскость G, такая что M_1 и M_2 лежат в разных полупространствах по отношению к G, то есть эта гиперплоскость определяет решающее правило для точек из этих полупространств.

Замечание. В линейной отделимости без ограничения общности можно ограничиться рассмотрением только гиперплоскостей, проходящих через начало координат, то есть гиперплосткостей вида $(\tilde{\alpha},x)=0$.

Справедливо следующее утверждение.

Теорема 2 ([6]). Если для $M_1, M_2 \in E^n$ выполнено правило (*), то M_1 и M_2 линейно отделимы.

2.4. Сокращение поля признаков

Наряду с n-мерным кубом E^n нам будет удобно рассматривать n-мерный куб $D^n = \{-1,1\}^n$.

Для множеств $M_1, M_2 \subseteq D^n$ положим $M = M_1 \cup (-M_2)$. Этому множеству можно сопоставить (-1,1)-матрицу, строками которой являются вектора из множества M. В дальнейшем мы будем обозначать ее той же буквой, что и соответствующее множество.

Пусть $M_1 = \{\tilde{\alpha}_1, \tilde{\alpha}_2, \dots, \tilde{\alpha}_{m_1}\}, M_2 = \{\tilde{\beta}_1, \tilde{\beta}_2, \dots, \tilde{\beta}_{m_2}\}; \tilde{\alpha_i}, \tilde{\beta}_j \in \bar{D}^n.$ Вектор

$$\overline{p}(M) = \frac{1}{|M|} \sum_{\tilde{\alpha}_i \in M} \tilde{\alpha}_i$$

называется информационным вектором множества M.

Вектор

$$\overline{q}(M_1, M_2) = \frac{\overline{p}(M_1) - \overline{p}(M_2)}{2}$$

называется характеризационным вектором множеств M_1 и M_2 .

Будем предполагать, что множества M_1 и M_2 слабо H-разделимы, то есть существует такая разделяющая гиперплоскость G вида $(\overline{q}, \overline{x}) = 0$, что при $\alpha \in M_1$ и $\beta \in M_2$ выполнено $(\overline{q}, \alpha) > 0$ и $(\overline{q}, \beta) < 0$.

Другими словами, для всех векторов $\tilde{\alpha}$ из эталонного множества M выполняются неравенства $(\bar{q}, \tilde{\alpha}) > 0$.

Не ограничивая общности, можно считать, что все компоненты q_i вектора \overline{q} положительные, $i=1,2,\ldots,n$. Кроме того, достаточно рассмотреть лишь случай $|M_1|=|M_2|$ (при этом вектор \overline{q} коллинеарен весовому вектору $\overline{d}=\sum\limits_{\tilde{\alpha}_i\in M}\tilde{\alpha}_i$).

Величина

$$B = \min_{\tilde{\alpha} \in M} \quad (\tilde{\alpha}, \overline{d})$$

называется порогом распознавания для эталонного множества М.

Пусть $\Pi = \{1, 2, ..., n\}$ — исходное множество признаков.

Если $\Pi'=\{i_1,i_2,\ldots,i_k\}\subseteq \Pi$ есть некоторое (упорядоченное по возрастанию) подмножество признаков, то для $\tilde{\alpha}=\{\tilde{\alpha}_1,\ldots,\tilde{\alpha}_n\}\in D^n$ через $\tilde{\alpha'}\in D^k$ обозначим вектор, составленный из компонент i_1,\ldots,i_k вектора $\tilde{\alpha}$.

Будем говорить, что вектор $\tilde{\alpha'}$ получен из $\tilde{\alpha}$ путем проектирования (удаления компонент, или удаления признаков). Аналогично, для множества векторов $M = \{\tilde{\alpha}_1, \tilde{\alpha}_2, \dots, \tilde{\alpha}_m\}$ через M' будем обозначать множество векторов $\{\tilde{\alpha'}_1, \tilde{\alpha'}_2, \dots, \tilde{\alpha'}_m\}$, полученных указанным проектированием. Будем также говорить, что множество M' получено проектированием множества M на множество признаков Π' .

Задача сокращения поля признаков может быть сформулирована следующим образом.

Для данного эталонного множества M с порогом распознавания B>0 и некоторого фиксированного числа $c\in\mathbb{R},\quad 0\leqslant c\leqslant B$, найти минимальное (по мощности) подмножество признаков Π' такое, что порог распознавания для M' (проекции M на Π') будет не менее, чем c.

Можно доказать следующее утверждение.

Теорема 3 ([7], [8]). Задача сокращения поля признаков является NP-полной [10].

3. Алгоритм распознавания с обучением \mathcal{A}

Здесь мы рассмотрим новый алгоритм распознавания \mathcal{A} . Этот алгоритм, помимо собственно процедуры распознавания, включает в себя процедуру проверки и формирования свойств слабой и сильной разделимости эталонных множеств, а также процедуру сокращения исходного множества признаков.

Опишем подробнее этапы алгоритма \mathcal{A} .

3.1. Подготовительный этап

Заданные эталонные множества M_1 и M_2 ($|M_1|=|M_2|=m$) представляются в виде (-1,1)-матриц размера $m\times n$, из которых образуется матрица $M=M_1\cup (-M_2)$ размера $2m\times n$ и вычисляется ее информационный вектор $\bar{q}(M)=(q_1,\ldots,q_n)$ (он совпадает с характеризационным вектором для эталонных множеств M_1 и M_2).

В случае $q_i=0$ из матрицы M удаляется (посредством массива $M_{asst}(n)$) столбец с номером i, при этом сам номер запоминается в массиве $M_{zap}(n)$.

Если для некоторого i имеем $q_i < 0$, то такой номер i также запоминается в массиве $M_{zap}(n)$, а в матрице M все знаки в столбце с номером i заменяются на противоположные [7]. Все операции также синхронно проводятся с вектором $\bar{q}(M)$, в результате чего оставшиеся его компоненты становятся положительными. Эти компоненты вектора $\bar{q}(M)$ выписываются в порядке неубывания.

Соответствующая перестановка столбцов матрицы M приводит к разбиению ее столбцов на группы, на каждой из которых значение компоненты вектора $\bar{q}(M)$ постоянно.

3.2. Проверка (формирование) слабой \mathcal{A} -разделимости

После умножения матрицы M на вектор $\bar{q}(M)$ определяются величины

$$SV(I) = \min_{1 \le i \le m} (\bar{q}(M), a_i), \qquad SN(J) = \min_{m+1 \le j \le 2m} (\bar{q}(M), a_j),$$

где a_i, a_j — строки матрицы M, а I, J — номера строк в M, на которых достигается соответствующий минимум. Если теперь $\min(SV(I), SN(J)) > 0$, то множества M_1 и M_2 слабо \mathcal{A} -разделимы; в противном случае удаляем из M строки с номерами I и J (возможно несколько раз), до тех пор, пока не придем к выполнению условия слабой \mathcal{A} -разделимости.

Будем называть распознавание устойчивым на матрице M, если удаление строки из M не уменьшает порога распознавания.

На этом шаге мы также можем вычислить число ошибочных строк, относительно которых распознавание является устойчивым [4].

3.3. Проверка (формирование) сильной \mathcal{A} -разделимости

Образуем матрицу (массив) $M_{raz}(n)$ размера $m^2 \times n$ (соответствующую множеству $\overline{M} = \{\overline{a} - \overline{b} | \overline{a} \in M_1, \overline{b} \in M_2\}.$

После умножения матрицы M на транспонированную матрицу M_{raz}^T аналогично шагу 3.2 можем вычислить величины $M_{imssv}(I)$, $M_{imssv}(J)$. Если $\min(M_{imssv}(I), M_{imssv}(J)) > 0$, то матрицы M_1 и M_2 сильно \mathcal{A} -разделимы [7]. В противном случае удаляем из матрицы M строки с номерами I и J (возможно, несколько раз) до тех пор, пока не придем к выполнению условия сильной \mathcal{A} -разделимости (запоминание номеров удаляемых из M строк происходит в массиве M_{ASKA}).

3.4. Сокращение множества признаков I (построение 1-тупиковой матрицы)

Введем следующие понятия.

Матрицу назовем тупиковой, если удаление любой группы столбцов не является допустимым, то есть приводит к снижению порога распознавания.

Матрицу назовем l-тупиковой, если удаление любой группы столбцов в количестве не более l не является допустимым, то есть приводит к снижению порога распознавания.

Замечание. Очевидно, что из l-тупиковости матрицы не следует ее тупиковость.

На этапах 3.4 и 3.5 множество признаков обрабатывается (сокращается) для полученной матрицы M.

Для матрицы M, столбцы которой разбиты на группы, пусть $q_{(i)}$ обозначает общее значение компонент вектора $\bar{q}(M)$ на столбцах i-ой группы.

Используем следующие обозначения:

D — порог распознавания для M;

 $\Sigma(I)$ — скалярное произведение $I\text{-}\textsc{o}\/$ строки матрицы M на вектор $\bar{q}(M).$

SB(I) — часть $\Sigma(I)$ на номерах столбцов из I-ой группы;

$$\Sigma_M(I) = \Sigma(I) - SB(I).$$

Подмножество номеров строк $S\subseteq\{1,2,\ldots,m\}$ будем называть граничным множеством для матрицы M, если при $i\in S$ имеет место $d\sum (\tilde{\alpha}_i)=B$, то есть $\sum (\tilde{\alpha}_i)=\frac{B}{d}$, где B— порог распознавания, $d=\sum_{\alpha\in M}\tilde{\alpha}$.

С учетом этих обозначений строка с номером I принадлежит граничному множеству S тогда и только тогда, когда

$$D - \Sigma_M(I) \leqslant SB(I) < D - \Sigma_M(I) + q_{(i)}.$$

Пусть I_{GRAN} — массив, состоящий из номеров строк граничного множества S.

Среди столбцов i-ой группы отыскиваются такие, у которых в пересечении со строками из граничного множества S стоит -1. Пусть L — номер первого такого столбца из i-ой группы (если таких столбцов нет, то осуществляется переход к рассмотрению (i+1)-ой группы).

Удаляем из матрицы M столбец с номером L. Можно показать, что порог распознавания для сокращенной матрицы не меньше, чем исходный порог D.

Полагаем $M_{asst}(L) = 1$ (в массиве M_{asst} запоминаются номера удаленных столбцов) и заменяем SB(I) на $SB(I) - \text{sign}(M(I,L))q_{(i)}$.

Описанный процесс удаления столбцов матрицы M (без уменьшения порога распознавания) в результате циклического просмотра всех групп столбцов осуществляется до тех пор, пока еще возможно удаление какого-либо столбца хотя бы из одной группы.

В итоге будем иметь 1-тупиковую подматрицу матрицы M.

3.5. Сокращение множества признаков II (построение 2-тупиковой матрицы)

Для простоты осуществляется построение 2-тупиковой на группах столбцов матрицы исходной матрицы M, то есть возможность удаления пары столбцов проверяется только на имеющихся группах столбцов. Такая проверка осуществляется вполне аналогично описанному в пункте $3.4\ c$ тремя изменениями:

- A) $D \Sigma_M(I) \leqslant SB(I) < D \Sigma_M(I) + 2q_{(i)}$;
- Б) Среди пар столбцов i-ой группы отыскиваются такие, у которых в пересечении со строками из граничного множества стоят либо противоположные по знаку числа, либо оба отрицательные.
- В) $SB(I) = SB(I) + \sigma q_{(i)}$, где σ есть 2 либо -2, в зависимости от того, какой случай имеет место в предыдущем пункте.

Таким образом, в результате применения шага 3.5 получаем 2-тупиковую подматрицу матрицы M.

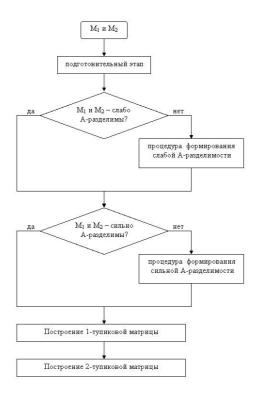
В заключение отметим следующую возможную схему обработки информации, представленной эталонным множествами M_1 и M_2 .

При движении по данной блок-схеме происходит сжатие (как по строкам, так и по столбцам) исходной информации об эталонных множествах, при этом порог распознавания может только увеличиваться, что позволяет ожидать повышения качества распознавания и таким образом может рассматриваться как самоусовершенствование представленного алгоритма распознавания.

4. Практические приложения и направления дальнейших исследований

Эта работа реализована в нескольких областях в геологии и в социально-экономических областях [3], [4] и [5]. Анализ результатов распознавания показал, что процедуру распознавания самоорганизация алгоритма \mathcal{A} , заложенная в него, приводит к повышению качества распознавания.

Интересным обобщением данной задачи является рассмотрение обучающих множеств, в которых присутствуют ошибки. Интерес



представляет модификации предложенных алгоритмов для решения практических задач, а также теоретические оценки качества распознавания для таких моделей.

Список литературы

- [1] Константинов Р.М., Королева З.Е., Кудрявцев В.Б. О комбинаторно-логическом подходе к задачам прогноза рудоносности // Проблемы кибернетики. Вып. 31. М.: Наука, 1976. С. 5–33.
- [2] Журавлев Ю.И. Алгебраический подход к задачам распознавания // Проблемы кибернетики. Вып. 33. М.: Наука, 1978. С. 5–68.

- [3] Переяславский В.И. Об одном линейном методе распознавания образов // Комбинаторно-алгебраические методы в прикладной математике. Горький: Изд-во ГГУ, 1982. С. 89–121.
- [4] Сиротинская С.В. Метод вариационных рядов и его применение к исследованию некоторых геологических особенностей оловянно-вольфрамовых месторождений // Логико-информационные решения геологических задач. М.: Наука, 1975. С. 5–82.
- [5] Кудрявцев Вит.Б., Чижова И.А. Дифференцированная оценка рекреационных территорий // Математические методы в биологии. М.: Изд-во МГУ, 1985.
- [6] Шайеб А. Об одном алгоритме распознавания типа голосования // Дискретная математика и ее приложения. М.: Изд-во МГУ, 1985.
- [7] Шайеб А. Болотов А.А. О линейных метрических алгоритмах распознавания // Тезисы VI всесоюзной конференции по математической кибернетике. Саратов, 1983.
- [8] Шайеб А. К задаче сокращения признакового пространства в алгоритмах распознавания // Дискретная математика и ее приложения. М.: Изд-во МГУ, 1985.
- [9] Шайеб А. Болотов А.А. О метрических алгоритмах классификации // ДАН. 1987. Т. 292. № 3.
- [10] Гэри М., Джонсон Д. Вычислительные машины и труднорешаемые задачи. М.: Мир, 1982. С. 416.