
(19) United States
US 20120271871A1

(12) Patent Application Publication (10) Pub. N0.: US 2012/0271871 A1
Babin et a]. (43) Pub. Date: Oct. 25, 2012

(54) DOUBLE PRECISION APPROXIMATION OF (52) US. Cl. 708/204
A SINGLE PRECISION OPERATION

(76) Inventors: Dmitry N. Babin, Moscow (RU);
Denis V. Parkhomenko, MoscoW (57) ABSTRACT
(RU); Ivan L. Mazurenko,
MOSCOW (RU); Denis“ Parfenov, A method for double precision approximation of a single
MOSCOW (RU); Alexander N, precision operation is disclosed. The method may include
Filippov3 Moscow (RU) steps (A) to (B). Step (A) may store an input Value in a

processor. The processor generally implements a plurality of
(21) Appl. No.: 13/280,607 ?rst operations in hardWare. Each ?rst operation may receive

a ?rst Variable as an argument. The ?rst Variable may be
(22) Filedi Oct- 25, 2011 implemented in a ?xed point format at a single precision. The

input Value may be implemented in the ?xed point format at
(30) Foreign Application Priority Data a double precision. Step (B) may generate an output Value by

emulating a selected one of the ?rst operations using the input
Apr. 22, 201 l (RU) 201 l 1 15796 Value as the argument‘ The emulation may utilize the Selected

_ _ _ _ ?rst operation in hardWare. The output Value may be imple
Pubhcatlon Classl?catlon mented in the ?xed point format at the double precision. The

(51) Int, Cl, emulation is generally performed by a plurality of instruc
G06F 5/00 (200601) tions executed by the processor.

100 \

1 02 \

DEFINE FUNCTION Y=F(X)
(E.G., Y = x-1, Y = x“/2, Y = (1-x2)“/2)

104 \ I
DEFINE INVERSE FUNCTION

x = G(Y)

106 \ I
APPROXIMATE x AND Y

108 \ I
SOLVE IMPLICIT EQUATION

110\ I
SOLVE FOR Y

Patent Application Publication Oct. 25, 2012 Sheet 1 0f 4 US 2012/0271871 A1

100\

102\
DEFINE FUNCTION Y=F(X)

(E.G., Y = x-1, Y = x1/2, Y = (1-x2)1/2)

104 \ l
DEFINE INVERSE FUNCTION

X = G(Y)

106 \ l
APPROXIMATE X AND Y

108 \ l
SOLVE IMPLICIT EQUATION

110\ l
SOLVE FOR Y

FIG. 1

Patent Application Publication

DETERMINE N, F(X)
RANGE OF XAND
RANGE OF Y

124\ "
CALCULATE A

126\ I
CALCULATE B

128\ I
CALCULATE X0

130\ I
CALCULATE X1

132\ v
CALCULATE YO

134\ "
CALCULATE Y1

136\ v
CALCULATE X

138\ I
CALCULATE Y

140\ I
DETERMINE INVERSE
FUNCTION X = G(Y)

142\ I
REPLACE X AND Y WITH

APPROXIMATIONS

144 \ v

SOLVE FOR Y1

146 \ "

CODE EQUATIONS INTO
SOFTWARE

FIG. 2A

Oct. 25, 2012 Sheet 2 of4

N Z v

N Z V

US 2012/0271871 A1

Patent Application Publication Oct. 25, 2012 Sheet 3 0f 4 US 2012/0271871 A1

160 \

162 \ 164 \

MEMORY PROCESSOR

168 \

166 -\ <—> X IN REG

SW
170 \

Y OUT REG

172 \

HW FUNCTIONS

FIG. 3

HW FUNCTIONS
- ADD

SUBTRACT
MULTIPLY
DIVIDE

Patent Application Publication Oct. 25, 2012 Sheet 4 0f 4 US 2012/0271871 A1

180\
182\

RECEIVE VALUE X

184 186\
NO CALCULATE Y = F(X)

IN HARDWARE

188\ YES

CALCULATE X0

190 \ l
CALCULATE x1

192\ l
CALCULATE Y0 = F(XO)

IN HARDWARE

194 \ l
CALCULATE Y1

196 \ l
CALCULATE Y

19s\ L
BUFFER VALUE Y

FIG. 4

US 2012/0271871A1

DOUBLE PRECISION APPROXIMATION OF
A SINGLE PRECISION OPERATION

[0001] This application claims the bene?t of Russian
Application No. 2011115796, ?led Apr. 22, 2011 and is
hereby incorporated by reference in its entirety.

FIELD OF THE INVENTION

[0002] The present invention relates to calculating math
ematical operations generally and, more particularly, to a
method and/or apparatus for implementing a double precision
approximation of a single precision operation.

BACKGROUND OF THE INVENTION

[0003] Processors commonly have a set of basic operations
that can be performed in hardWare Without resorting to soft
Ware implementations. Such basic operations can be per
formed in a minimum number of processor cycles and so are
e?icient from a computational point of vieW. The feWer the
number of basic operations that a processor implements, the
loWer the cost of the processor. Therefore, processor manu
facturers often try to minimize the number of basic opera
tions.
[0004] A minimal set of basic operations is often insu?i
cient for real applications. Programmers are commonly
forced to implement non-basic operations and higher-resolu
tion basic operations in softWare. For example, many appli
cations involve a calculation of a 32-bit integer result for a 1/X
operation, Where X is a 32-bit integer argument. If the pro
cessor executing the application only supports a 16-bit hard
Ware calculation of the 1/X operation, Where X is a 16-bit
integer argument, the application Will rely on a softWare
routine to calculate the 32-bit integer result.
[0005] Known techniques to calculate 32-bit integer opera
tions in softWare commonly use ?oating-point number calcu
lations. The 32-bit integer values are converted to ?oating
point numbers. The calculations are performed With ?oating
point operations. A ?oating-point value that results from the
?oating-point operations is subsequently converted back into
a 32-bit integer value. Hence, applying such techniques to
?xed-point operations causes some technical issues. Most of
the ?oating-point techniques use a polynomial approxima
tion for the calculation, Which is sloW compared With the
basic operations. Moreover, the ?oating-point techniques are
applicable only to a narroW class of functions.

SUMMARY OF THE INVENTION

[0006] The present invention generally concerns a method
for double precision approximation of a single precision
operation. The method may include steps (A) to (B). Step (A)
may store an input value in a processor. The processor gen
erally implements a plurality of ?rst operations in hardWare.
Each ?rst operation may receive a ?rst variable as an argu
ment. The ?rst variable may be implemented in a ?xed point
format at a single precision. The input value may be imple
mented in the ?xed point format at a double precision. Step
(B) may generate an output value by emulating a selected one
of the ?rst operations using the input value as the argument.
The emulation may utiliZe the selected ?rst operation in hard
Ware. The output value may be implemented in the ?xed point

Oct. 25, 2012

format at the double precision. The emulation is generally
performed by a plurality of instructions executed by the pro
cessor.

[0007] The objects, features and advantages of the present
invention include providing a method and/or apparatus for
implementing a double precision approximation of a single
precision operation that may (i) provide a technique to build
an e?icient softWare implementation of an arbitrary math
ematical operation With double precision, (ii) utiliZe a single
precision hardWare implementation of the mathematical
operation in calculating the double precision result, (iii) emu
late With softWare a 2N-bit function FCC), Where X' is a
2N-bit ?xed point number, using a hardWare implementation
of an N-bit function FQi), Where X is an N-bit ?xed point
number, (iv) consume less poWer in calculating a double
precision ?xed point result of a mathematical operation com
pared With a ?oating point-based calculation of the double
precision ?xed point result, (v) calculate a double precision
?xed point result faster than a ?oating point-based calculation
of the double precision ?xed point result, (vi) generate the
double precision result With a non-iterative set of calculations
and/or (vii) use the single precision ?xed point hardWare in
the emulation.

BRIEF DESCRIPTION OF THE DRAWINGS

[0008] These and other objects, features and advantages of
the present invention Will be apparent from the folloWing
detailed description and the appended claims and draWings in
Which:
[0009] FIG. 1 is a How diagram of a method for generating
an approximation of an operation;
[0010] FIG. 2A is a How diagram of an example method for
generating a softWare approximation of an operation;
[0011] FIG. 2B is a draWing illustrating a set of ?xed point
values during corresponding steps in the method of FIG. 2A;
[0012] FIG. 3 is a block diagram ofan apparatus in accor
dance With a preferred embodiment of the present invention;
and
[0013] FIG. 4 is a How diagram of an example method for
an emulation of a mathematical operation.

DETAILED DESCRIPTION OF THE PREFERRED
EMBODIMENTS

[0014] When designing high-performance applications for
use on a target processor, designs of the application may
involve one or more double precision operations. If the target
processor only has single precision implementations of the
operations, a designer may emulate the operations using
instructions (e.g., softWare, ?rmware, microcode, etc.)
executed by the target processor. For example, the target
processor may implement an inverse operation (e.g.,YI1/X),
Where X is a 16-bit ?xed point (or integer) number. HoWever,
an application may specify that X is a 32-bit ?xed point (or
integer) number. Therefore, the softWare is generally utiliZed
to emulate (or approximate) a 32-bit version of the operation.
[0015] Some embodiments of the present invention gener
ally concern improving an accuracy of the softWare emula
tions (computations) Where hardWare implementations of
single precision analogous operations may be available in the
processor. For a processor having an N-bit precision math
ematical operation (or function) YIFQi), a softWare imple
mentation of a 2N-bit precision mathematical operationY:F
Qi) may be built With a loW computational complexity. A

US 2012/0271871Al

mathematical operation is generally a relation that associates
members of a set With members of another set.

[0016] To help keep the computational complexity of the
mathematical operation loW, the processor should implement
a set of elementary operations. An elementary operation may
be an operation involving at least one of the operations of
addition, subtraction, multiplication and division. The
elementary operations of addition and subtraction may be
implemented for double precision values. The elementary
multiplication operation of tWo N-bit numbers (e. g., A and B)
generally produces a 2N-bit number for the product. The
elementary division operation of tWo N-bit numbers A and B
generally produces an N-bit number for the quotient. The
softWare emulations may be applicable to both vector proces
sors and processors performing operations in a scalar Way.
[0017] Several example implementations of softWare
implementations for double precision operations may be pro
vided beloW. The examples generally include the operations
l/X, square root of X and square root of (l—X2). Other opera
tions may be implemented to meet the criteria of a particular
application. Many different operations YIFQi) may be cal
culated at double precision using the softWare Where single
precision versions of the operations exists in the hardWare of
the processor. Each operation Y:F(X) should include an
inverse operation X:G(Y). The inverse operations may be
either (i) implemented in the processor at the single precision
or (ii) expressed through processor commands With small
complexity. The softWare technique described herein may
generate a result value in a single pass through a set of cal
culations. An accuracy of the result value generally permits
usage in real applications.
[0018] The softWare technique generally alloWs 2N-bit pre
cision softWare implementations of complex functions to be
built in terms of already implemented basic functions by
applying superposition. An accuracy of such implementa
tions generally depends on the basic functions and may be
veri?ed by direct testing. The technique described beloW Was
successfully tested on a l/ square root (x) operation as an
example.
[0019] By Way of a speci?c example, consider a function
YIl/X. Values X0 and Y0 may be N-bit ?xed point numbers
that satisfy several relationships as folloWs: XO:[X~2(N_l)],
YO:[Y~2(N_3)], YIl/X, Where 1A§X§l and l§Y§4. The
notation “[Z]” generally means taking an integer portion of
the value Z, Where Z may be a ?xed point number. The above
conditions are generally ful?lled for many processors oper
ating in With ?xed point numbers. Typical values for N may
include, but are not limited to, 16 or 32.
[0020] Referring to FIG. 1, a How diagram of a method 100
for generating an approximation of an operation is shoWn.
The method (or process) 100 generally comprises a step (or
state) 102, a step (or state) 104, a step (or state) 106, a step (or
state) 108 and a step (or state) 110. The steps 102 to 110 may
represent modules and/or blocks that may be implemented as
hardWare, ?rmWare, softWare, a combination of hardWare,
?rmware and/ or softWare, or other implementations.
[0021] The method 100 may be applied to a processor gen
erally having the operations of addition, subtraction, multi
plication and arithmetic shift right by a constant K (e.g., a
division by 2K) implemented in hardWare. The addition
operation and the subtraction operation may be performed by
the processor on 2N-bit numbers, Where N is a digit capacity
of the processor(e.g., N:l6, 32, 64, 128, etc.). The multipli
cation operation may implement a double precision integer

Oct. 25, 2012

multiplication for single precision arguments. For example,
the multiplication operation generally has tWo N-bit argu
ments and a 2N-bit result. The division operation may be
implemented as an N-bit precision division of tWo N-bit
arguments.
[0022] In the step 102, a function (or operation) Y:F(X)
may be de?ned by the designer (or programmer or engineer).
An analogous functionYO:FQ(O) may be implemented in the
hardWare of the processor using an N-bit ?xed point argument
value so thatYO:FQ(O) holds for any X, Y andY:F(X) Where
XO:[X~2N] and YO:[Y~2N]. In the step 104, an inverse func
tion X:G(Y) may be de?ned. The function G is generally an
inverse of the function F. The function G may be implemented
in the hardWare of the processor With an N-bit ?xed point
argument.
[0023] To implement the functionYIFQQ With double pre
cision (e. g., 2N bits), an operation (I) may be determined such
that (YO, Yl):(I>Q(O, X1). The operation (I) generally provides
for the transfer of the values X0, X l to the values YO,Yl. The
values Y0, Y1, X0 and X1 may be de?ned as folloWs: X0:
[X-2N], YO:[Y-2N], Xl:[X-2(2N)—2N-XO] and Yl:[Y-2(2N)—
2N-YO].
[0024] In the step 106, approximations for the values X and
Y may be determined. The value of X may be approximated
as X:Q(O-2N+X1)/2(2N). The value ofY may be approximated
as Y:(YO~2N+Yl)/2(2N). The implicit equation X:G(X) may
be solved by the designer forYl in the step 108 in terms of X,
X0, X 1 and Y0. The solution may be achieved by performing
arithmetic operations that are inverse to the operations
involved in G. Where possible, nonlinear conditions in the Y
members may not be taken into account if the nonlinear
conditions poorly in?uence calculation accuracy. Once the
value of Y1 has been determined, the operation YIFQi) may
be expressed in step 110 asY:(YO-2N+Y1)/2(2N). An accuracy
of the technique for calculating the (YO, Yl):(I>Q(O, X1) func
tion may by performed by either complete testing or repre
sentative random testing.
[0025] The method 100 described above in general form
Was tested for softWare increasing the precision for the fol

loWing function implementations: YIl/X, Y:\/X and Y:

l—X2. The softWare complexity and error rate generally
depend on the particular function that should be imple
mented. As the testing shoWed, in many cases the error rate is
suf?ciently valid for solving real problems. The speed of the
technique may be high compared With existing approaches.
[0026] Referring to FIG. 2A, a How diagram of an example
method 120 for generating a softWare approximation of an
operation is shoWn. Referring to FIG. 2B, a draWing illustrat
ing a set of ?xed point values during corresponding steps in
the method 120 is shoWn. The method (or process) 120 gen
erally comprises a step (or state) 122, a step (or state) 124, a
step (or state) 126, a step (or state) 128, a step (or state) 130,
a step (or state) 132, a step (or state) 134, a step (or state) 136,
a step (or state) 138, a step (or state) 140, a step (or state) 142,
a step (or state) 144 and a step (or state) 146. The steps 122 to
146 may represent modules and/ or blocks that may be imple
mented as hardWare, ?rmware, softWare, a combination of
hardWare, ?rmWare and/ or softWare, or other implementa
tions.
[0027] In the step 122, based on the capabilities of a target
processor, a value of N, an operation FlQi), a range of an
argument (input) value X and a range of a result (output) value
Y may be determined. Suppose that the processor has a func

US 2012/0271871A1

tion for calculating the inverse of the value X (e.g., Y:F1(X)
:l/X) implemented With N-bit (e.g., 16-bit) precision. The
range of the value X may be limited to unity or less (e.g.,
Xél). ForY:1/X, the range ofthe valueY may be at least 1
(e. g., 1 éY). To limit the upper value ofY, an upper boundary
(e.g., 7) may be imposed on the range ofY (e.g., 1§Y§7).
[0028] In the step 124, a location of a radix point in the
value X may be determined based on the range of the value X.
In the above example, since the value X is no greater than
unity, the radix point (e.g., period) may be located at position
A such that the value X may be represented by a 1-bit integer
portion (e.g., A:1) and a 31-bit fractional portion (see FIG.
2B).
[0029] In the step 126, a location of a radix point may be
determined based on the range of the value Y. In the above
example, since the value Y is no greater than seven, the radix
point may be located a position B such that the valueY may be
represented by a 3-bit integer portion (e.g., B:3) and a 29-bit
fractional portion (see FIG. 2B).
[0030] In the step 128, a value XO may be calculated. Gen
erally, the value XO may be a 16-bit integer that satis?es
X:XO/2l5,Y:1/X and X is a real number. As such, the value
XO may be expressed as XO:[X-2(N_A)] (e.g., XO:[X~215]). By
multiplying the value X by 215, the radix point is effectively
moved right to a middle position of the 32-bit number (see
FIG. 2B). The notation “[]” may adjust the value XO to only
the 16-bit integer portion of the product X215. The value XO
may be an integer representation of a most signi?cant half
(e. g., upper 16 bits) of the value X.
[0031] In the step 130, a value Xl may be calculated. The
value Xl may be a 16-bit integer calculated as Xl:[X~2(2N_
A)—2N'XO] (e.g., Xl:[X~2_—2l6~XO]). Multiplication of the
value X by 231 may right-shift the radix point to the right end
of the 32-bit number. Multiplication of the value XO by 216
may expand the 16-bit value to a 32-bit value, With the loWer
16 bits being Zeros. Subtraction of the shifted value XO from
the shifted value X generally sets to Zero the 16 upper bits
leaving only the loWer 16 bits in the result. The value X 1 may
be an integer representation of a least signi?cant half (e.g.,
loWer 16 bits) of the value X.
[0032] In the step 132, a value YO may be calculated. Gen
erally, the value YO may be a 16-bit integer that satis?es
Y:YO/2l3,Y:1/X andY is a real number. As such, the value
YO may be expressed as YO:[Y-2(N_B)] (e.g.,YO:[Y~2l3]) . By
multiplying the value Y by 213, the radix point is effectively
moved right to a middle position of the 32-bit number (see
FIG. 2B). The notation “[]” may set the value YO to only the
16-bit integer portion of the productY-2l3 . The value YO may
be an integer representation of a most signi?cant half of the
value Y

[0033] In the step 134, a value Yl may be calculated. The
value Yl may be a 16-bit integer calculated as Yl:[Y~2(2N_
B)—2N'YO] (e.g., Yl:[Y~229—2l6~YO]). Multiplication of the
valueY by 229 may right-shift the radix point to the right end
of the 32-bit number. Multiplication of the value YO by 216
may expand the 16-bit value to a 32-bit value, With the loWer
16 bits being Zeros. Subtraction of the shifted value YO from
the shifted value Y generally sets to Zero the 16 upper bits
leaving only the loWer 16 bits in the result. The valueYl may
be an integer representation of a least signi?cant half of the
value Y
[0034] In the step 13 6, an approximation of the value X may
be calculated. The approximation of the value X may be the
value Xl appended to the end of the value X0 and the radix

Oct. 25, 2012

point restored to the original position. Implementing the cal
culation in hardWare and softWare may be achieved as

x:(2N-xO-x1)/2<2N-A> (e.g., x:(216-xO+xl)/231).
[0035] In the step 138, an approximation of the valueY may
be calculated. The approximation of the value Y may be the
value Yl appended to the end of the value Y0 and the radix
point restored to the original position. Implementing the cal
culation in hardWare and softWare may be achieved as
Y:(2N-YO+Yl)/2(2N_B) (e.g.,Y:(216-YO+Yl)/229).
[0036] The function (Y O,Y1):(I> l(XO,X1) may be built
using only processor arithmetic operations and the Y:F1(X)
operation. In the step 140, an inverse function Gl may be
determined for the function Fl. For the example of F1Q():1/
X, the inverse may be GIQQIX. The approximations for the
value X and the value Y may be inserted into the implicit
equationY:Gl(X) in the step 142. The implicit equation may
be expressed as folloWs:

[0037] The above implicit equation may be solved for the
value Yl in the step 144.
[0038] At the end of the step 144, an equation may be
available to calculate the values X0 in terms of the value X. An
equation may also be available to calculate the value X1 in
terms of the values X and X0. The hardWare function Fl may
be available to calculate the value YO from the value XO (e. g.,
YO:F1Q(O)). An equation may also be available to calculate
the valueYl in terms of the values X, XO andYO. Furthermore,
an equation may be available to calculate the approximate
value Y from the values YO andYl. Using the available equa
tions, softWare (e.g., processor executable instructions) may
be generated to emulate the function F 1 With double precision
in the step 146. The softWare may be generated by the
designer and/or by a common code generating machine that
translates the equations into the softWare.
[0039] Everywhere above, a division by 2N may be pro
duced by applying logical shift right. For example, a value
A/2N:A>>N, Where the notation “>> ” may represent the
logical shift right by N bits.
[0040] Consider a situation Where each of the above men
tioned operations (e.g., multiplications, additions, 1/X and
logical shifts) take place in a single processor cycle. More
over, the domain of the functions may be restricted. Different
cases generally result in different restrictions. Accordingly, a
complexity for the 1/X computation may be approximately 7
processor cycles. Model testing generally shoWs that a maxi
mum error in the valueY does not exceed 3 bit values, Where
23O§X§231 and Xe[1/2,1).
[0041] In another example implementation, a mathematical

operation may be de?ned as Y':F2(X):\/X. Furthermore, the
processor may include the operation Y:FlQ():1/X in the
hardWare at the 16-bit precision. Therefore, the function
Y':F2(X) may be calculated, Where X and Y' may be 16-bit

integers that satisfy X:XO/2l5, Y':YO'/2l5, Y':\/X and X, Y
may be real numbers.
[0042] The method 120 may be by folloWed to build a
softWare implementation for a square root of X operation for
32-bit numbers. As in the example for YIl/X, the value N,
F2(X), range of X and range of Y' may be determined in the
step 122. In the steps 124 and 126, the values ofA and B may
be calculated (e. g., A:1 and B:1 in the example). The value
XO may be determined in the step 128 as XO:[X-2l5]. The
value Xl may be calculated in the step 130 as Xl:[X~23 1
2l6-XO].

US 2012/0271871141

[0043] In the step 132, the value YO‘ may be calculated as
YO':[Y'~2l5]. The valueYl' may be calculated in the step 134
as Y1':[Y'~23 l—216~YO']. In the step 136, an approximation of
the value X may be calculated as X:(216~XO+X l)/23 1. In the
step 138, an approximation of the value Y' may be calculated
as Y':(2l6~YO'+Yl')/231. The function (YO',Y1'):(I>2Q(O,Xl)
may be built using the processor arithmetic operations and the
Y':F2(X) operation. The inverse operation G may be deter
mined in the step 140.
[0044] The solutions of the implicit equation for the func
tion may be calculated in steps 142 and 144 as folloWs:

Y':F2(X) and Yl':(Z~dl)/2l3+(Z~Xl)/2l4 Where dl:2l5~XO—
(Y')2 and Z:F1(Y'). In the step 146, software implementing
the equations may be generated.
[0045] If a complexity of the F2(X) calculation may be
considered as l, a complexity of a 32-bit version of the F2(X)
computation may be 10 processor cycles. Model testing gen
erally shoWs that a maximum error in the value Y' generally
does not exceed 3 bit values, Where 23O§X§231 and Xe[1/2,
l).
[0046] In still another example implementation, a math

ematical operation may be de?ned as Y":F3Q(): l—X2.
Furthermore, the processor may implement the operations
F3(X) and Fl(X) in the hardWare at l6-bits precision. There
fore, the function Y":F3(X) may be calculated, Where X and
Y" ma be 16-bit integers that satisfy X:XO/2l5,Y":YO"/2l5,

Y": l-X2 and X, Y may be real numbers.
[0047] The method 120 may be by folloWed to build a
softWare implementation for a square root of (l—X2) opera
tion for 32-bit numbers. As in the earlier examples, the value
N, F3(X), range of X and range ofY" may be determined in the
step 122. In the steps 124 and 126, the values of A and B may
be calculated (e. g., AIl and BIl in the example). The value
XO may be determined in the step 128 as XO:[X~215]. The
value Xl may be calculated in the step 130 as Xl:[X-23 1
2l6-XO].
[0048] In the step 132, the value YO" may be calculated as
YO":[Y"-2l5]. The value Y1" may be calculated in the step
134 asYl":[Y"~231—2l6~YO"]. In the step 136, an approxima
tion of the value X may be calculated as X:(2l6~XO+X1)/231.
In the step 138, an approximation of the value Y" may be
calculated asY":(216~YO"+Y1")/231. The function (YO",Yl")
:(I>3(XO,Xl) may be built using only processor arithmetic
operations and theY":F3(X) operation. The inverse operation
G may be determined in the step 140.
[0049] The solutions of the implicit equation for the func
tion may be calculated in steps 142 and 144 as folloWs:

Y":F3Q() and Y1":(6Z")/2l3—Q(OXl)/22O-(Z"/228,)Where
Z":Fl(Y") and 6:23O—(XO)2—(Y")2. In the step 146, softWare
implementing the equations may be generated.
[0050] If a complexity of the F3(X) operation may be con
sidered as l, a complexity of 32-bit version of F3(X) operation
may be 14 processor cycles. Model testing generally shoWs
that a maximum error of the value Y" does not exceed 6 bit

values, Where 0§X§[(231\/3)/2] and Xe[0,(\/3)/2).
[0051] Referring to FIG. 3, a block diagram of an apparatus
160 is shoWn in accordance With a preferred embodiment of
the present invention. The apparatus (or device, circuit or
integrated circuit) 160 may implement the method 120 to
emulate a mathematical operation in double precision. The
apparatus 160 generally comprises a block (or circuit) 162
and a block (or circuit) 164.

Oct. 25, 2012

[0052] The circuit 162 may implement a memory circuit.
The circuit 162 is generally operational to store one or more
softWare programs (e.g., sets of instructions) 166. Each soft
Ware program 166 When executed by the circuit 164 may
approximate a double precision mathematical operation. The
calculations performed in generating the approximation may
include using a single precision version of the mathematical
operation implemented in the hardWare of the circuit 164.
[0053] The circuit 164 may implement a processor circuit.
The circuit 164 is generally operational to perform a variety
of arithmetic operations and logical operations based on the
softWare 166 received from the circuit 162. The circuit 164
may include a register 168 con?gured to buffer the value X.
The register 168 may be suf?ciently Wide to store the value X
in a ?xed point format at a double precision (e.g., 2N bits).
The circuit 164 may also include a register 170. The register
170 may be con?gured to buffer the valueY, Y', Y" or similar.
The register 170 may be suf?ciently Wide to store the values
in a ?xed point format at the double precision. In some
embodiments, the register 168 may be an input register used
to store the argument values for one or more mathematical
operations calculated by the softWare 166 executing on the
circuit 164. The register 170 may be an output register used to
store the result values calculated by the mathematical opera
tions.
[0054] The circuit 164 may also include one or more opera
tions (or functions) implemented in the hardWare alone. The
operations may include the elementary operations and one or
more mathematical operations. The elementary operations
may include, but are not limited to, addition, subtraction,
multiplication and division.
[0055] Most to all of the elementary operations may by
designed to operate With ?xed point (or integer) numbers at
double precision. The mathematical operations (e. g., YIF
Q()) may include, but are not limited to, at least one of the
inverse operation, the square root operation and the square
root of (1 —X2) operation. All of the mathematical operations
maybe designed to operate With ?xed point (or integer) num
bers at single precision. Other operations may be imple
mented to meet the criteria of a particular application.
[0056] Referring to FIG. 4, a How diagram of an example
method 180 for an emulation of a mathematical operation is
shoWn. The method (or process) 180 may be implemented by
the apparatus 160. The method 180 generally comprises a
step (or block) 182, a step (or block) 184, a step (or block)
186, a step (or block) 188, a step (or block) 190, a step (or
block) 192, a step (or block) 194, a step (or block) 196 and a
step (or block) 198. The steps 182 to 198 may represent
modules and/ or blocks that may be implemented as hardWare,
?rmware, softWare, a combination of hardWare, ?rmWare
and/or softWare, or other implementations.
[0057] In the step 182, the value X representing an argu
ment of a selected operation may be received in the register
168. The softWare 166 may have a previously coded deterrni
nation that the selected operation is either a single precision
operation or a double precision operation. If the selected
operation is not a double precision operation (e.g., the NO
branch of step 184), the value X may be transferred to the
corresponding circuitry of the operation 172 implemented in
the hardWare of the circuit 164. The hardWare operation 172
may calculate the result value Y in the step 186.
[0058] If the selected operation is a double precision opera
tion (e.g., the YES branch of step 184), the softWare 166 may
con?gure the circuit 164 to calculate the value XO for the

US 2012/0271871Al

selected operation in the step 188. In the step 190, the soft
ware 166 may con?gure the circuit 164 to calculate the value
Xl for the selected operation. The software 166 may further
con?gure the circuit 164 in the step 192 to calculate the value
YO using the selected operation, as implemented in the hard
ware, with the value XO as the argument. In the step 194, the
software 166 may con?gure the circuit 164 to calculate the
value Y1. Once the values X0, X1, Y0 and Y1 have been gen
erated, the software 166 may further con?gure to the circuit
164 to calculate an approximation for the valueY in the step
196. The valueY as calculated in either the step 186 or the step
196 may be buffered in the register 170 in the step 198. Hence,
a combination of the software 166 and the hardware of the
circuit 164 may emulate a double precision version of the
selected operation. The emulation may utiliZe the single pre
cision hardware version of the selected operation in calculat
ing the value Y. The emulation may avoid the expense of
converting to and from ?oating point numbers.
[0059] As mentioned above, superposition may be applied
in some cases to several already implemented functions to
obtain double precision implementations of the single preci
sion operation. Sometimes, solving the implicit equation is
not an easy task for the designer. In order to avoid a dif?cult
solution, the function may be expressed in terms of existing
functions.
[0060] The above techniques were tested for a 32-bit pre

cision function l// X, which is a superposition of the 32-bit

precision functions l/X and Complexity of the superpo
sition approach may be approximately a sum of the complexi

ties of each component. The function 1 X may have
approximately a 17 processor cycle complexity. Testing of the
32-bit version of the function l/\/)_(generally showed that not
more than 7 low bits of the result may be incorrect.
[0061] The functions performed by the diagram of FIG. 4
may be implemented using one or more of a conventional
general purpose processor, digital computer, microprocessor,
microcontroller, RISC (reduced instruction set computer)
processor, CISC (complex instruction set computer) proces
sor, SIMD (single instruction multiple data) processor, signal
processor, central processing unit (CPU), arithmetic logic
unit (ALU), video digital signal processor (V DSP) and/or
similar computational machines, programmed according to
the teachings of the present speci?cation, as will be apparent
to those skilled in the relevant art(s). Appropriate software,
?rmware, coding, routines, instructions, opcodes, microcode,
and/ or program modules may readily be prepared by skilled
programmers based on the teachings of the present disclo
sure, as will also be apparent to those skilled in the relevant
art(s). The software is generally executed from a medium or
several media by one or more of the processors of the machine
implementation.
[0062] The present invention may also be implemented by
the preparation of ASlCs (application speci?c integrated cir
cuits), Platform ASlCs, FPGAs (?eld programmable gate
arrays), PLDs (programmable logic devices), CPLDs (com
plex programmable logic device), sea-of-gates, RFlCs (radio
frequency integrated circuits), ASSPs (application speci?c
standard products), one or more monolithic integrated cir
cuits, one or more chips or die arranged as ?ip-chip modules
and/or multi-chip modules or by interconnecting an appro
priate network of conventional component circuits, as is
described herein, modi?cations of which will be readily
apparent to those skilled in the art(s).

Oct. 25, 2012

[0063] The present invention thus may also include a com
puter product which may be a storage medium or media
and/or a transmission medium or media including instruc
tions which may be used to program a machine to perform one
or more processes or methods in accordance with the present
invention. Execution of instructions contained in the com
puter product by the machine, along with operations of sur
rounding circuitry, may transform input data into one or more
?les on the storage medium and/or one or more output signals
representative of a physical object or substance, such as an
audio and/or visual depiction. The storage medium may
include, but is not limited to, any type of disk including ?oppy
disk, hard drive, magnetic disk, optical disk, CD-ROM, DVD
and magneto-optical disks and circuits such as ROMs (read
only memories), RAMs (random access memories),
EPROMs (electronically programmable ROMs), EEPROMs
(electronically erasable ROMs), UVPROM (ultra-violet eras
able ROMs), Flash memory, magnetic cards, optical cards,
and/or any type of media suitable for storing electronic
instructions.
[0064] The elements of the invention may form part or all of
one or more devices, units, components, systems, machines
and/or apparatuses. The devices may include, but are not
limited to, servers, workstations, storage array controllers,
storage systems, personal computers, laptop computers, note
book computers, palm computers, personal digital assistants,
portable electronic devices, battery powered devices, set-top
boxes, encoders, decoders, transcoders, compressors, decom
pressors, pre-processors, post-processors, transmitters,
receivers, transceivers, cipher circuits, cellular telephones,
digital cameras, positioning and/ or navigation systems, medi
cal equipment, heads-up displays, wireless devices, audio
recording, storage and/or playback devices, video recording,
storage and/ or playback devices, game platforms, peripherals
and/or multi-chip modules. Those skilled in the relevant art(s)
would understand that the elements of the invention may be
implemented in other types of devices to meet the criteria of
a particular application.
[0065] As would be apparent to those skilled in the relevant
art(s), the signals illustrated in FIGS. 1-4 represent logical
data ?ows. The logical data ?ows are generally representative
of physical data transferred between the respective blocks by,
for example, address, data, and control signals and/or busses.
The system represented by the circuit 180 may be imple
mented in hardware, software or a combination of hardware
and software according to the teachings of the present disclo
sure, as would be apparent to those skilled in the relevant

art(s).
[0066] While the invention has beenparticularly shown and
described with reference to the preferred embodiments
thereof, it will be understood by those skilled in the art that
various changes in form and details may be made without
departing from the scope of the invention.

1. A method for double precision approximation of a single
precision operation, comprising the steps of:

(A) storing an input value in a processor, wherein (i) said
processor implements a plurality of ?rst operations in
hardware, (ii) each of said ?rst operations receives a ?rst
variable as an argument, (iii) said ?rst variable is imple
mented in a ?xed point format at a single precision and
(iv) said input value is implemented in said ?xed point
format at a double precision; and

(B) generating an output value by emulating a selected one
of said ?rst operations using said input variable as said

US 2012/0271871141

argument, wherein (i) said emulation utilizes said
selected ?rst operation in said hardware, (ii) said output
value is implemented in said ?xed point format at said
double precision and (iii) said emulation is performed by
a plurality of instructions executed by said processor.

2. The method according to claim 1, Wherein said emula
tion comprises the step of:

generating a ?rst value as an integer representation of a
most signi?cant half of said input value.

3. The method according to claim 2, Wherein said emula
tion further comprises the step of:

generating a second value as a difference betWeen said
input value and said ?rst value shifted to align With said
most signi?cant half.

4. The method according to claim 3, Wherein said emula
tion further comprises the step of:

generating a third value by performing said selected ?rst
operation in said hardWare using said ?rst value as said
argument.

5. The method according to claim 4, Wherein said emula
tion further comprises the step of:

generating a fourth value based on said ?rst value and said
second value.

6. The method according to claim 5, Wherein said output
value is generated by appending said fourth value to said third
value.

7. The method according to claim 1, Wherein said ?rst
operations emulated by said instructions comprise at least one
of (i) an inverse operation, (ii) a square root operation and (iii)
a square root of a difference betWeen unity and said argument
squared.

8. The method according to claim 1, Wherein said emula
tion utiliZes a plurality of second operations implemented in
said hardWare at said double precision.

9. The method according to claim 8, Wherein said second
operations comprise (i) an addition operation, (ii) a subtrac
tion operation and (iii) a multiplication operation.

10. An apparatus comprising:
a processor con?gured to store an input value, Wherein (i)

said processor implements a plurality of ?rst operations
in hardWare, (ii) each of said ?rst operations receives a
?rst variable as an argument, (iii) said ?rst variable is
implemented in a ?xed point format at a single precision
and (iv) said input value is implemented in said ?xed
point format at a double precision; and

a memory containing a plurality of processor executable
instructions, said instructions being con?gured to gen
erate an output value by emulating a selected one of said
?rst operations using said input variable as said argu
ment, Wherein (i) said emulation utiliZes said selected

Oct. 25, 2012

?rst operation in said hardWare and (ii) said output value
is implemented in said ?xed point format at said double
precision.

11. The apparatus according to claim 10, Wherein said
emulation generates a ?rst value as an integer representation
of a most signi?cant half of said input value.

12. The apparatus according to claim 11, Wherein said
emulation generates a second value as a difference betWeen
said input value and said ?rst value shifted to align With said
most signi?cant half.

13. The apparatus according to claim 12, Wherein said
emulation generates a third value by performing said selected
?rst operation in said hardWare using said ?rst value as said
argument.

14. The apparatus according to claim 13, Wherein said
emulation generates a fourth value based on said ?rst value
and said second value.

15. The apparatus according to claim 14, Wherein said
output value is generated by appending said fourth value to
said third value.

16. The apparatus according to claim 10, Wherein said ?rst
operations emulated by said instructions comprise at least one
of (i) an inverse operation, (ii) a square root operation and (iii)
a square root of a difference betWeen unity and said argument
squared.

17. The apparatus according to claim 10, Wherein said
emulation utiliZes a plurality of second operations imple
mented in said hardWare at said double precision.

18. The apparatus according to claim 17, Wherein said
second operations comprise an addition operation, (ii) a
subtraction operation and (iii) a multiplication operation.

19. The apparatus according to claim 10, Wherein said
apparatus is implemented as one or more integrated circuits.

20. An apparatus comprising:
means for processing con?gured to store an input value,

Wherein (i) said means for processing implements a
plurality of ?rst operations in hardWare, (ii) each of said
?rst operations receives a ?rst variable as an argument,
(iii) said ?rst variable is implemented in a ?xed point
format at a single precision and (iv) said input value is
implemented in said ?xed point format at a double pre
cision; and

means for storing a plurality of processor executable
instructions, said instructions being con?gured to gen
erate an output value by emulating a selected one of said
?rst operations using said input value as said argument,
Wherein (i) said emulation utiliZes said selected ?rst
operation in said hardWare and (ii) said output value is
implemented in said ?xed point format at said double
precision.

