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DOUBLE PRECISION APPROXIMATION OF 
A SINGLE PRECISION OPERATION 

[0001] This application claims the bene?t of Russian 
Application No. 2011115796, ?led Apr. 22, 2011 and is 
hereby incorporated by reference in its entirety. 

FIELD OF THE INVENTION 

[0002] The present invention relates to calculating math 
ematical operations generally and, more particularly, to a 
method and/or apparatus for implementing a double precision 
approximation of a single precision operation. 

BACKGROUND OF THE INVENTION 

[0003] Processors commonly have a set of basic operations 
that can be performed in hardWare Without resorting to soft 
Ware implementations. Such basic operations can be per 
formed in a minimum number of processor cycles and so are 
e?icient from a computational point of vieW. The feWer the 
number of basic operations that a processor implements, the 
loWer the cost of the processor. Therefore, processor manu 
facturers often try to minimize the number of basic opera 
tions. 
[0004] A minimal set of basic operations is often insu?i 
cient for real applications. Programmers are commonly 
forced to implement non-basic operations and higher-resolu 
tion basic operations in softWare. For example, many appli 
cations involve a calculation of a 32-bit integer result for a 1/X 
operation, Where X is a 32-bit integer argument. If the pro 
cessor executing the application only supports a 16-bit hard 
Ware calculation of the 1/X operation, Where X is a 16-bit 
integer argument, the application Will rely on a softWare 
routine to calculate the 32-bit integer result. 
[0005] Known techniques to calculate 32-bit integer opera 
tions in softWare commonly use ?oating-point number calcu 
lations. The 32-bit integer values are converted to ?oating 
point numbers. The calculations are performed With ?oating 
point operations. A ?oating-point value that results from the 
?oating-point operations is subsequently converted back into 
a 32-bit integer value. Hence, applying such techniques to 
?xed-point operations causes some technical issues. Most of 
the ?oating-point techniques use a polynomial approxima 
tion for the calculation, Which is sloW compared With the 
basic operations. Moreover, the ?oating-point techniques are 
applicable only to a narroW class of functions. 

SUMMARY OF THE INVENTION 

[0006] The present invention generally concerns a method 
for double precision approximation of a single precision 
operation. The method may include steps (A) to (B). Step (A) 
may store an input value in a processor. The processor gen 
erally implements a plurality of ?rst operations in hardWare. 
Each ?rst operation may receive a ?rst variable as an argu 
ment. The ?rst variable may be implemented in a ?xed point 
format at a single precision. The input value may be imple 
mented in the ?xed point format at a double precision. Step 
(B) may generate an output value by emulating a selected one 
of the ?rst operations using the input value as the argument. 
The emulation may utiliZe the selected ?rst operation in hard 
Ware. The output value may be implemented in the ?xed point 
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format at the double precision. The emulation is generally 
performed by a plurality of instructions executed by the pro 
cessor. 

[0007] The objects, features and advantages of the present 
invention include providing a method and/or apparatus for 
implementing a double precision approximation of a single 
precision operation that may (i) provide a technique to build 
an e?icient softWare implementation of an arbitrary math 
ematical operation With double precision, (ii) utiliZe a single 
precision hardWare implementation of the mathematical 
operation in calculating the double precision result, (iii) emu 
late With softWare a 2N-bit function FCC), Where X' is a 
2N-bit ?xed point number, using a hardWare implementation 
of an N-bit function FQi), Where X is an N-bit ?xed point 
number, (iv) consume less poWer in calculating a double 
precision ?xed point result of a mathematical operation com 
pared With a ?oating point-based calculation of the double 
precision ?xed point result, (v) calculate a double precision 
?xed point result faster than a ?oating point-based calculation 
of the double precision ?xed point result, (vi) generate the 
double precision result With a non-iterative set of calculations 
and/or (vii) use the single precision ?xed point hardWare in 
the emulation. 

BRIEF DESCRIPTION OF THE DRAWINGS 

[0008] These and other objects, features and advantages of 
the present invention Will be apparent from the folloWing 
detailed description and the appended claims and draWings in 
Which: 
[0009] FIG. 1 is a How diagram of a method for generating 
an approximation of an operation; 
[0010] FIG. 2A is a How diagram of an example method for 
generating a softWare approximation of an operation; 
[0011] FIG. 2B is a draWing illustrating a set of ?xed point 
values during corresponding steps in the method of FIG. 2A; 
[0012] FIG. 3 is a block diagram ofan apparatus in accor 
dance With a preferred embodiment of the present invention; 
and 
[0013] FIG. 4 is a How diagram of an example method for 
an emulation of a mathematical operation. 

DETAILED DESCRIPTION OF THE PREFERRED 
EMBODIMENTS 

[0014] When designing high-performance applications for 
use on a target processor, designs of the application may 
involve one or more double precision operations. If the target 
processor only has single precision implementations of the 
operations, a designer may emulate the operations using 
instructions (e.g., softWare, ?rmware, microcode, etc.) 
executed by the target processor. For example, the target 
processor may implement an inverse operation (e.g.,YI1/X), 
Where X is a 16-bit ?xed point (or integer) number. HoWever, 
an application may specify that X is a 32-bit ?xed point (or 
integer) number. Therefore, the softWare is generally utiliZed 
to emulate (or approximate) a 32-bit version of the operation. 
[0015] Some embodiments of the present invention gener 
ally concern improving an accuracy of the softWare emula 
tions (computations) Where hardWare implementations of 
single precision analogous operations may be available in the 
processor. For a processor having an N-bit precision math 
ematical operation (or function) YIFQi), a softWare imple 
mentation of a 2N-bit precision mathematical operationY:F 
Qi) may be built With a loW computational complexity. A 
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mathematical operation is generally a relation that associates 
members of a set With members of another set. 

[0016] To help keep the computational complexity of the 
mathematical operation loW, the processor should implement 
a set of elementary operations. An elementary operation may 
be an operation involving at least one of the operations of 
addition, subtraction, multiplication and division. The 
elementary operations of addition and subtraction may be 
implemented for double precision values. The elementary 
multiplication operation of tWo N-bit numbers (e. g., A and B) 
generally produces a 2N-bit number for the product. The 
elementary division operation of tWo N-bit numbers A and B 
generally produces an N-bit number for the quotient. The 
softWare emulations may be applicable to both vector proces 
sors and processors performing operations in a scalar Way. 
[0017] Several example implementations of softWare 
implementations for double precision operations may be pro 
vided beloW. The examples generally include the operations 
l/X, square root of X and square root of (l—X2). Other opera 
tions may be implemented to meet the criteria of a particular 
application. Many different operations YIFQi) may be cal 
culated at double precision using the softWare Where single 
precision versions of the operations exists in the hardWare of 
the processor. Each operation Y:F(X) should include an 
inverse operation X:G(Y). The inverse operations may be 
either (i) implemented in the processor at the single precision 
or (ii) expressed through processor commands With small 
complexity. The softWare technique described herein may 
generate a result value in a single pass through a set of cal 
culations. An accuracy of the result value generally permits 
usage in real applications. 
[0018] The softWare technique generally alloWs 2N-bit pre 
cision softWare implementations of complex functions to be 
built in terms of already implemented basic functions by 
applying superposition. An accuracy of such implementa 
tions generally depends on the basic functions and may be 
veri?ed by direct testing. The technique described beloW Was 
successfully tested on a l/ square root (x) operation as an 
example. 
[0019] By Way of a speci?c example, consider a function 
YIl/X. Values X0 and Y0 may be N-bit ?xed point numbers 
that satisfy several relationships as folloWs: XO:[X~2(N_l)], 
YO:[Y~2(N_3)], YIl/X, Where 1A§X§l and l§Y§4. The 
notation “[Z]” generally means taking an integer portion of 
the value Z, Where Z may be a ?xed point number. The above 
conditions are generally ful?lled for many processors oper 
ating in With ?xed point numbers. Typical values for N may 
include, but are not limited to, 16 or 32. 
[0020] Referring to FIG. 1, a How diagram of a method 100 
for generating an approximation of an operation is shoWn. 
The method (or process) 100 generally comprises a step (or 
state) 102, a step (or state) 104, a step (or state) 106, a step (or 
state) 108 and a step (or state) 110. The steps 102 to 110 may 
represent modules and/or blocks that may be implemented as 
hardWare, ?rmWare, softWare, a combination of hardWare, 
?rmware and/ or softWare, or other implementations. 
[0021] The method 100 may be applied to a processor gen 
erally having the operations of addition, subtraction, multi 
plication and arithmetic shift right by a constant K (e.g., a 
division by 2K) implemented in hardWare. The addition 
operation and the subtraction operation may be performed by 
the processor on 2N-bit numbers, Where N is a digit capacity 
of the processor(e.g., N:l6, 32, 64, 128, etc.). The multipli 
cation operation may implement a double precision integer 
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multiplication for single precision arguments. For example, 
the multiplication operation generally has tWo N-bit argu 
ments and a 2N-bit result. The division operation may be 
implemented as an N-bit precision division of tWo N-bit 
arguments. 
[0022] In the step 102, a function (or operation) Y:F(X) 
may be de?ned by the designer (or programmer or engineer). 
An analogous functionYO:FQ(O) may be implemented in the 
hardWare of the processor using an N-bit ?xed point argument 
value so thatYO:FQ(O) holds for any X, Y andY:F(X) Where 
XO:[X~2N] and YO:[Y~2N]. In the step 104, an inverse func 
tion X:G(Y) may be de?ned. The function G is generally an 
inverse of the function F. The function G may be implemented 
in the hardWare of the processor With an N-bit ?xed point 
argument. 
[0023] To implement the functionYIFQQ With double pre 
cision (e. g., 2N bits), an operation (I) may be determined such 
that (YO, Yl):(I>Q(O, X1). The operation (I) generally provides 
for the transfer of the values X0, X l to the values YO,Yl. The 
values Y0, Y1, X0 and X1 may be de?ned as folloWs: X0: 
[X-2N], YO:[Y-2N], Xl:[X-2(2N)—2N-XO] and Yl:[Y-2(2N)— 
2N-YO]. 
[0024] In the step 106, approximations for the values X and 
Y may be determined. The value of X may be approximated 
as X:Q(O-2N+X1)/2(2N). The value ofY may be approximated 
as Y:(YO~2N+Yl)/2(2N). The implicit equation X:G(X) may 
be solved by the designer forYl in the step 108 in terms of X, 
X0, X 1 and Y0. The solution may be achieved by performing 
arithmetic operations that are inverse to the operations 
involved in G. Where possible, nonlinear conditions in the Y 
members may not be taken into account if the nonlinear 
conditions poorly in?uence calculation accuracy. Once the 
value of Y1 has been determined, the operation YIFQi) may 
be expressed in step 110 asY:(YO-2N+Y1)/2(2N). An accuracy 
of the technique for calculating the (YO, Yl):(I>Q(O, X1) func 
tion may by performed by either complete testing or repre 
sentative random testing. 
[0025] The method 100 described above in general form 
Was tested for softWare increasing the precision for the fol 

loWing function implementations: YIl/X, Y:\/X and Y: 

l—X2. The softWare complexity and error rate generally 
depend on the particular function that should be imple 
mented. As the testing shoWed, in many cases the error rate is 
suf?ciently valid for solving real problems. The speed of the 
technique may be high compared With existing approaches. 
[0026] Referring to FIG. 2A, a How diagram of an example 
method 120 for generating a softWare approximation of an 
operation is shoWn. Referring to FIG. 2B, a draWing illustrat 
ing a set of ?xed point values during corresponding steps in 
the method 120 is shoWn. The method (or process) 120 gen 
erally comprises a step (or state) 122, a step (or state) 124, a 
step (or state) 126, a step (or state) 128, a step (or state) 130, 
a step (or state) 132, a step (or state) 134, a step (or state) 136, 
a step (or state) 138, a step (or state) 140, a step (or state) 142, 
a step (or state) 144 and a step (or state) 146. The steps 122 to 
146 may represent modules and/ or blocks that may be imple 
mented as hardWare, ?rmware, softWare, a combination of 
hardWare, ?rmWare and/ or softWare, or other implementa 
tions. 
[0027] In the step 122, based on the capabilities of a target 
processor, a value of N, an operation FlQi), a range of an 
argument (input) value X and a range of a result (output) value 
Y may be determined. Suppose that the processor has a func 
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tion for calculating the inverse of the value X (e.g., Y:F1(X) 
:l/X) implemented With N-bit (e.g., 16-bit) precision. The 
range of the value X may be limited to unity or less (e.g., 
Xél). ForY:1/X, the range ofthe valueY may be at least 1 
(e. g., 1 éY). To limit the upper value ofY, an upper boundary 
(e.g., 7) may be imposed on the range ofY (e.g., 1§Y§7). 
[0028] In the step 124, a location of a radix point in the 
value X may be determined based on the range of the value X. 
In the above example, since the value X is no greater than 
unity, the radix point (e.g., period) may be located at position 
A such that the value X may be represented by a 1-bit integer 
portion (e.g., A:1) and a 31-bit fractional portion (see FIG. 
2B). 
[0029] In the step 126, a location of a radix point may be 
determined based on the range of the value Y. In the above 
example, since the value Y is no greater than seven, the radix 
point may be located a position B such that the valueY may be 
represented by a 3-bit integer portion (e.g., B:3) and a 29-bit 
fractional portion (see FIG. 2B). 
[0030] In the step 128, a value XO may be calculated. Gen 
erally, the value XO may be a 16-bit integer that satis?es 
X:XO/2l5,Y:1/X and X is a real number. As such, the value 
XO may be expressed as XO:[X-2(N_A)] (e.g., XO:[X~215]). By 
multiplying the value X by 215, the radix point is effectively 
moved right to a middle position of the 32-bit number (see 
FIG. 2B). The notation “[ ]” may adjust the value XO to only 
the 16-bit integer portion of the product X215. The value XO 
may be an integer representation of a most signi?cant half 
(e. g., upper 16 bits) of the value X. 
[0031] In the step 130, a value Xl may be calculated. The 
value Xl may be a 16-bit integer calculated as Xl:[X~2(2N_ 
A)—2N'XO] (e.g., Xl:[X~2_—2l6~XO]). Multiplication of the 
value X by 231 may right-shift the radix point to the right end 
of the 32-bit number. Multiplication of the value XO by 216 
may expand the 16-bit value to a 32-bit value, With the loWer 
16 bits being Zeros. Subtraction of the shifted value XO from 
the shifted value X generally sets to Zero the 16 upper bits 
leaving only the loWer 16 bits in the result. The value X 1 may 
be an integer representation of a least signi?cant half (e.g., 
loWer 16 bits) of the value X. 
[0032] In the step 132, a value YO may be calculated. Gen 
erally, the value YO may be a 16-bit integer that satis?es 
Y:YO/2l3,Y:1/X andY is a real number. As such, the value 
YO may be expressed as YO:[Y-2(N_B)] (e.g.,YO:[Y~2l3]) . By 
multiplying the value Y by 213, the radix point is effectively 
moved right to a middle position of the 32-bit number (see 
FIG. 2B). The notation “[ ]” may set the value YO to only the 
16-bit integer portion of the productY-2l3 . The value YO may 
be an integer representation of a most signi?cant half of the 
value Y 

[0033] In the step 134, a value Yl may be calculated. The 
value Yl may be a 16-bit integer calculated as Yl:[Y~2(2N_ 
B)—2N'YO] (e.g., Yl:[Y~229—2l6~YO]). Multiplication of the 
valueY by 229 may right-shift the radix point to the right end 
of the 32-bit number. Multiplication of the value YO by 216 
may expand the 16-bit value to a 32-bit value, With the loWer 
16 bits being Zeros. Subtraction of the shifted value YO from 
the shifted value Y generally sets to Zero the 16 upper bits 
leaving only the loWer 16 bits in the result. The valueYl may 
be an integer representation of a least signi?cant half of the 
value Y 
[0034] In the step 13 6, an approximation of the value X may 
be calculated. The approximation of the value X may be the 
value Xl appended to the end of the value X0 and the radix 
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point restored to the original position. Implementing the cal 
culation in hardWare and softWare may be achieved as 

x:(2N-xO-x1)/2<2N-A> (e.g., x:(216-xO+xl)/231). 
[0035] In the step 138, an approximation of the valueY may 
be calculated. The approximation of the value Y may be the 
value Yl appended to the end of the value Y0 and the radix 
point restored to the original position. Implementing the cal 
culation in hardWare and softWare may be achieved as 
Y:(2N-YO+Yl)/2(2N_B) (e.g.,Y:(216-YO+Yl)/229). 
[0036] The function (Y O,Y1):(I> l(XO,X1) may be built 
using only processor arithmetic operations and the Y:F1(X) 
operation. In the step 140, an inverse function Gl may be 
determined for the function Fl. For the example of F1Q():1/ 
X, the inverse may be GIQQIX. The approximations for the 
value X and the value Y may be inserted into the implicit 
equationY:Gl(X) in the step 142. The implicit equation may 
be expressed as folloWs: 

[0037] The above implicit equation may be solved for the 
value Yl in the step 144. 
[0038] At the end of the step 144, an equation may be 
available to calculate the values X0 in terms of the value X. An 
equation may also be available to calculate the value X1 in 
terms of the values X and X0. The hardWare function Fl may 
be available to calculate the value YO from the value XO (e. g., 
YO:F1Q(O)). An equation may also be available to calculate 
the valueYl in terms of the values X, XO andYO. Furthermore, 
an equation may be available to calculate the approximate 
value Y from the values YO andYl. Using the available equa 
tions, softWare (e.g., processor executable instructions) may 
be generated to emulate the function F 1 With double precision 
in the step 146. The softWare may be generated by the 
designer and/or by a common code generating machine that 
translates the equations into the softWare. 
[0039] Everywhere above, a division by 2N may be pro 
duced by applying logical shift right. For example, a value 
A/2N:A>>N, Where the notation “>> ” may represent the 
logical shift right by N bits. 
[0040] Consider a situation Where each of the above men 
tioned operations (e.g., multiplications, additions, 1/X and 
logical shifts) take place in a single processor cycle. More 
over, the domain of the functions may be restricted. Different 
cases generally result in different restrictions. Accordingly, a 
complexity for the 1/X computation may be approximately 7 
processor cycles. Model testing generally shoWs that a maxi 
mum error in the valueY does not exceed 3 bit values, Where 
23O§X§231 and Xe[1/2,1). 
[0041] In another example implementation, a mathematical 

operation may be de?ned as Y':F2(X):\/X. Furthermore, the 
processor may include the operation Y:FlQ():1/X in the 
hardWare at the 16-bit precision. Therefore, the function 
Y':F2(X) may be calculated, Where X and Y' may be 16-bit 

integers that satisfy X:XO/2l5, Y':YO'/2l5, Y':\/X and X, Y 
may be real numbers. 
[0042] The method 120 may be by folloWed to build a 
softWare implementation for a square root of X operation for 
32-bit numbers. As in the example for YIl/X, the value N, 
F2(X), range of X and range of Y' may be determined in the 
step 122. In the steps 124 and 126, the values ofA and B may 
be calculated (e. g., A:1 and B:1 in the example). The value 
XO may be determined in the step 128 as XO:[X-2l5]. The 
value Xl may be calculated in the step 130 as Xl:[X~23 1 
2l6-XO]. 
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[0043] In the step 132, the value YO‘ may be calculated as 
YO':[Y'~2l5]. The valueYl' may be calculated in the step 134 
as Y1':[Y'~23 l—216~YO']. In the step 136, an approximation of 
the value X may be calculated as X:(216~XO+X l)/23 1. In the 
step 138, an approximation of the value Y' may be calculated 
as Y':(2l6~YO'+Yl')/231. The function (YO',Y1'):(I>2Q(O,Xl) 
may be built using the processor arithmetic operations and the 
Y':F2(X) operation. The inverse operation G may be deter 
mined in the step 140. 
[0044] The solutions of the implicit equation for the func 
tion may be calculated in steps 142 and 144 as folloWs: 

Y':F2(X) and Yl':(Z~dl)/2l3+(Z~Xl)/2l4 Where dl:2l5~XO— 
(Y')2 and Z:F1(Y'). In the step 146, software implementing 
the equations may be generated. 
[0045] If a complexity of the F2(X) calculation may be 
considered as l, a complexity of a 32-bit version of the F2(X) 
computation may be 10 processor cycles. Model testing gen 
erally shoWs that a maximum error in the value Y' generally 
does not exceed 3 bit values, Where 23O§X§231 and Xe[1/2, 
l). 
[0046] In still another example implementation, a math 

ematical operation may be de?ned as Y":F3Q(): l—X2. 
Furthermore, the processor may implement the operations 
F3(X) and Fl(X) in the hardWare at l6-bits precision. There 
fore, the function Y":F3(X) may be calculated, Where X and 
Y" ma be 16-bit integers that satisfy X:XO/2l5,Y":YO"/2l5, 

Y": l-X2 and X, Y may be real numbers. 
[0047] The method 120 may be by folloWed to build a 
softWare implementation for a square root of (l—X2) opera 
tion for 32-bit numbers. As in the earlier examples, the value 
N, F3(X), range of X and range ofY" may be determined in the 
step 122. In the steps 124 and 126, the values of A and B may 
be calculated (e. g., AIl and BIl in the example). The value 
XO may be determined in the step 128 as XO:[X~215]. The 
value Xl may be calculated in the step 130 as Xl:[X-23 1 
2l6-XO]. 
[0048] In the step 132, the value YO" may be calculated as 
YO":[Y"-2l5]. The value Y1" may be calculated in the step 
134 asYl":[Y"~231—2l6~YO"]. In the step 136, an approxima 
tion of the value X may be calculated as X:(2l6~XO+X1)/231. 
In the step 138, an approximation of the value Y" may be 
calculated asY":(216~YO"+Y1")/231. The function (YO",Yl") 
:(I>3(XO,Xl) may be built using only processor arithmetic 
operations and theY":F3(X) operation. The inverse operation 
G may be determined in the step 140. 
[0049] The solutions of the implicit equation for the func 
tion may be calculated in steps 142 and 144 as folloWs: 

Y":F3Q() and Y1":(6Z")/2l3—Q(OXl)/22O-(Z"/228,)Where 
Z":Fl(Y") and 6:23O—(XO)2—(Y")2. In the step 146, softWare 
implementing the equations may be generated. 
[0050] If a complexity of the F3(X) operation may be con 
sidered as l, a complexity of 32-bit version of F3(X) operation 
may be 14 processor cycles. Model testing generally shoWs 
that a maximum error of the value Y" does not exceed 6 bit 

values, Where 0§X§[(231\/3)/2] and Xe[0,(\/3)/2). 
[0051] Referring to FIG. 3, a block diagram of an apparatus 
160 is shoWn in accordance With a preferred embodiment of 
the present invention. The apparatus (or device, circuit or 
integrated circuit) 160 may implement the method 120 to 
emulate a mathematical operation in double precision. The 
apparatus 160 generally comprises a block (or circuit) 162 
and a block (or circuit) 164. 
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[0052] The circuit 162 may implement a memory circuit. 
The circuit 162 is generally operational to store one or more 
softWare programs (e.g., sets of instructions) 166. Each soft 
Ware program 166 When executed by the circuit 164 may 
approximate a double precision mathematical operation. The 
calculations performed in generating the approximation may 
include using a single precision version of the mathematical 
operation implemented in the hardWare of the circuit 164. 
[0053] The circuit 164 may implement a processor circuit. 
The circuit 164 is generally operational to perform a variety 
of arithmetic operations and logical operations based on the 
softWare 166 received from the circuit 162. The circuit 164 
may include a register 168 con?gured to buffer the value X. 
The register 168 may be suf?ciently Wide to store the value X 
in a ?xed point format at a double precision (e.g., 2N bits). 
The circuit 164 may also include a register 170. The register 
170 may be con?gured to buffer the valueY, Y', Y" or similar. 
The register 170 may be suf?ciently Wide to store the values 
in a ?xed point format at the double precision. In some 
embodiments, the register 168 may be an input register used 
to store the argument values for one or more mathematical 
operations calculated by the softWare 166 executing on the 
circuit 164. The register 170 may be an output register used to 
store the result values calculated by the mathematical opera 
tions. 
[0054] The circuit 164 may also include one or more opera 
tions (or functions) implemented in the hardWare alone. The 
operations may include the elementary operations and one or 
more mathematical operations. The elementary operations 
may include, but are not limited to, addition, subtraction, 
multiplication and division. 
[0055] Most to all of the elementary operations may by 
designed to operate With ?xed point (or integer) numbers at 
double precision. The mathematical operations (e. g., YIF 
Q()) may include, but are not limited to, at least one of the 
inverse operation, the square root operation and the square 
root of (1 —X2) operation. All of the mathematical operations 
maybe designed to operate With ?xed point (or integer) num 
bers at single precision. Other operations may be imple 
mented to meet the criteria of a particular application. 
[0056] Referring to FIG. 4, a How diagram of an example 
method 180 for an emulation of a mathematical operation is 
shoWn. The method (or process) 180 may be implemented by 
the apparatus 160. The method 180 generally comprises a 
step (or block) 182, a step (or block) 184, a step (or block) 
186, a step (or block) 188, a step (or block) 190, a step (or 
block) 192, a step (or block) 194, a step (or block) 196 and a 
step (or block) 198. The steps 182 to 198 may represent 
modules and/ or blocks that may be implemented as hardWare, 
?rmware, softWare, a combination of hardWare, ?rmWare 
and/or softWare, or other implementations. 
[0057] In the step 182, the value X representing an argu 
ment of a selected operation may be received in the register 
168. The softWare 166 may have a previously coded deterrni 
nation that the selected operation is either a single precision 
operation or a double precision operation. If the selected 
operation is not a double precision operation (e.g., the NO 
branch of step 184), the value X may be transferred to the 
corresponding circuitry of the operation 172 implemented in 
the hardWare of the circuit 164. The hardWare operation 172 
may calculate the result value Y in the step 186. 
[0058] If the selected operation is a double precision opera 
tion (e.g., the YES branch of step 184), the softWare 166 may 
con?gure the circuit 164 to calculate the value XO for the 
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selected operation in the step 188. In the step 190, the soft 
ware 166 may con?gure the circuit 164 to calculate the value 
Xl for the selected operation. The software 166 may further 
con?gure the circuit 164 in the step 192 to calculate the value 
YO using the selected operation, as implemented in the hard 
ware, with the value XO as the argument. In the step 194, the 
software 166 may con?gure the circuit 164 to calculate the 
value Y1. Once the values X0, X1, Y0 and Y1 have been gen 
erated, the software 166 may further con?gure to the circuit 
164 to calculate an approximation for the valueY in the step 
196. The valueY as calculated in either the step 186 or the step 
196 may be buffered in the register 170 in the step 198. Hence, 
a combination of the software 166 and the hardware of the 
circuit 164 may emulate a double precision version of the 
selected operation. The emulation may utiliZe the single pre 
cision hardware version of the selected operation in calculat 
ing the value Y. The emulation may avoid the expense of 
converting to and from ?oating point numbers. 
[0059] As mentioned above, superposition may be applied 
in some cases to several already implemented functions to 
obtain double precision implementations of the single preci 
sion operation. Sometimes, solving the implicit equation is 
not an easy task for the designer. In order to avoid a dif?cult 
solution, the function may be expressed in terms of existing 
functions. 
[0060] The above techniques were tested for a 32-bit pre 

cision function l// X, which is a superposition of the 32-bit 

precision functions l/X and Complexity of the superpo 
sition approach may be approximately a sum of the complexi 

ties of each component. The function 1 X may have 
approximately a 17 processor cycle complexity. Testing of the 
32-bit version of the function l/\/)_( generally showed that not 
more than 7 low bits of the result may be incorrect. 
[0061] The functions performed by the diagram of FIG. 4 
may be implemented using one or more of a conventional 
general purpose processor, digital computer, microprocessor, 
microcontroller, RISC (reduced instruction set computer) 
processor, CISC (complex instruction set computer) proces 
sor, SIMD (single instruction multiple data) processor, signal 
processor, central processing unit (CPU), arithmetic logic 
unit (ALU), video digital signal processor (V DSP) and/or 
similar computational machines, programmed according to 
the teachings of the present speci?cation, as will be apparent 
to those skilled in the relevant art(s). Appropriate software, 
?rmware, coding, routines, instructions, opcodes, microcode, 
and/ or program modules may readily be prepared by skilled 
programmers based on the teachings of the present disclo 
sure, as will also be apparent to those skilled in the relevant 
art(s). The software is generally executed from a medium or 
several media by one or more of the processors of the machine 
implementation. 
[0062] The present invention may also be implemented by 
the preparation of ASlCs (application speci?c integrated cir 
cuits), Platform ASlCs, FPGAs (?eld programmable gate 
arrays), PLDs (programmable logic devices), CPLDs (com 
plex programmable logic device), sea-of-gates, RFlCs (radio 
frequency integrated circuits), ASSPs (application speci?c 
standard products), one or more monolithic integrated cir 
cuits, one or more chips or die arranged as ?ip-chip modules 
and/or multi-chip modules or by interconnecting an appro 
priate network of conventional component circuits, as is 
described herein, modi?cations of which will be readily 
apparent to those skilled in the art(s). 

Oct. 25, 2012 

[0063] The present invention thus may also include a com 
puter product which may be a storage medium or media 
and/or a transmission medium or media including instruc 
tions which may be used to program a machine to perform one 
or more processes or methods in accordance with the present 
invention. Execution of instructions contained in the com 
puter product by the machine, along with operations of sur 
rounding circuitry, may transform input data into one or more 
?les on the storage medium and/or one or more output signals 
representative of a physical object or substance, such as an 
audio and/or visual depiction. The storage medium may 
include, but is not limited to, any type of disk including ?oppy 
disk, hard drive, magnetic disk, optical disk, CD-ROM, DVD 
and magneto-optical disks and circuits such as ROMs (read 
only memories), RAMs (random access memories), 
EPROMs (electronically programmable ROMs), EEPROMs 
(electronically erasable ROMs), UVPROM (ultra-violet eras 
able ROMs), Flash memory, magnetic cards, optical cards, 
and/or any type of media suitable for storing electronic 
instructions. 
[0064] The elements of the invention may form part or all of 
one or more devices, units, components, systems, machines 
and/or apparatuses. The devices may include, but are not 
limited to, servers, workstations, storage array controllers, 
storage systems, personal computers, laptop computers, note 
book computers, palm computers, personal digital assistants, 
portable electronic devices, battery powered devices, set-top 
boxes, encoders, decoders, transcoders, compressors, decom 
pressors, pre-processors, post-processors, transmitters, 
receivers, transceivers, cipher circuits, cellular telephones, 
digital cameras, positioning and/ or navigation systems, medi 
cal equipment, heads-up displays, wireless devices, audio 
recording, storage and/or playback devices, video recording, 
storage and/ or playback devices, game platforms, peripherals 
and/or multi-chip modules. Those skilled in the relevant art(s) 
would understand that the elements of the invention may be 
implemented in other types of devices to meet the criteria of 
a particular application. 
[0065] As would be apparent to those skilled in the relevant 
art(s), the signals illustrated in FIGS. 1-4 represent logical 
data ?ows. The logical data ?ows are generally representative 
of physical data transferred between the respective blocks by, 
for example, address, data, and control signals and/or busses. 
The system represented by the circuit 180 may be imple 
mented in hardware, software or a combination of hardware 
and software according to the teachings of the present disclo 
sure, as would be apparent to those skilled in the relevant 

art(s). 
[0066] While the invention has beenparticularly shown and 
described with reference to the preferred embodiments 
thereof, it will be understood by those skilled in the art that 
various changes in form and details may be made without 
departing from the scope of the invention. 

1. A method for double precision approximation of a single 
precision operation, comprising the steps of: 

(A) storing an input value in a processor, wherein (i) said 
processor implements a plurality of ?rst operations in 
hardware, (ii) each of said ?rst operations receives a ?rst 
variable as an argument, (iii) said ?rst variable is imple 
mented in a ?xed point format at a single precision and 
(iv) said input value is implemented in said ?xed point 
format at a double precision; and 

(B) generating an output value by emulating a selected one 
of said ?rst operations using said input variable as said 
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argument, wherein (i) said emulation utilizes said 
selected ?rst operation in said hardware, (ii) said output 
value is implemented in said ?xed point format at said 
double precision and (iii) said emulation is performed by 
a plurality of instructions executed by said processor. 

2. The method according to claim 1, Wherein said emula 
tion comprises the step of: 

generating a ?rst value as an integer representation of a 
most signi?cant half of said input value. 

3. The method according to claim 2, Wherein said emula 
tion further comprises the step of: 

generating a second value as a difference betWeen said 
input value and said ?rst value shifted to align With said 
most signi?cant half. 

4. The method according to claim 3, Wherein said emula 
tion further comprises the step of: 

generating a third value by performing said selected ?rst 
operation in said hardWare using said ?rst value as said 
argument. 

5. The method according to claim 4, Wherein said emula 
tion further comprises the step of: 

generating a fourth value based on said ?rst value and said 
second value. 

6. The method according to claim 5, Wherein said output 
value is generated by appending said fourth value to said third 
value. 

7. The method according to claim 1, Wherein said ?rst 
operations emulated by said instructions comprise at least one 
of (i) an inverse operation, (ii) a square root operation and (iii) 
a square root of a difference betWeen unity and said argument 
squared. 

8. The method according to claim 1, Wherein said emula 
tion utiliZes a plurality of second operations implemented in 
said hardWare at said double precision. 

9. The method according to claim 8, Wherein said second 
operations comprise (i) an addition operation, (ii) a subtrac 
tion operation and (iii) a multiplication operation. 

10. An apparatus comprising: 
a processor con?gured to store an input value, Wherein (i) 

said processor implements a plurality of ?rst operations 
in hardWare, (ii) each of said ?rst operations receives a 
?rst variable as an argument, (iii) said ?rst variable is 
implemented in a ?xed point format at a single precision 
and (iv) said input value is implemented in said ?xed 
point format at a double precision; and 

a memory containing a plurality of processor executable 
instructions, said instructions being con?gured to gen 
erate an output value by emulating a selected one of said 
?rst operations using said input variable as said argu 
ment, Wherein (i) said emulation utiliZes said selected 
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?rst operation in said hardWare and (ii) said output value 
is implemented in said ?xed point format at said double 
precision. 

11. The apparatus according to claim 10, Wherein said 
emulation generates a ?rst value as an integer representation 
of a most signi?cant half of said input value. 

12. The apparatus according to claim 11, Wherein said 
emulation generates a second value as a difference betWeen 
said input value and said ?rst value shifted to align With said 
most signi?cant half. 

13. The apparatus according to claim 12, Wherein said 
emulation generates a third value by performing said selected 
?rst operation in said hardWare using said ?rst value as said 
argument. 

14. The apparatus according to claim 13, Wherein said 
emulation generates a fourth value based on said ?rst value 
and said second value. 

15. The apparatus according to claim 14, Wherein said 
output value is generated by appending said fourth value to 
said third value. 

16. The apparatus according to claim 10, Wherein said ?rst 
operations emulated by said instructions comprise at least one 
of (i) an inverse operation, (ii) a square root operation and (iii) 
a square root of a difference betWeen unity and said argument 
squared. 

17. The apparatus according to claim 10, Wherein said 
emulation utiliZes a plurality of second operations imple 
mented in said hardWare at said double precision. 

18. The apparatus according to claim 17, Wherein said 
second operations comprise an addition operation, (ii) a 
subtraction operation and (iii) a multiplication operation. 

19. The apparatus according to claim 10, Wherein said 
apparatus is implemented as one or more integrated circuits. 

20. An apparatus comprising: 
means for processing con?gured to store an input value, 

Wherein (i) said means for processing implements a 
plurality of ?rst operations in hardWare, (ii) each of said 
?rst operations receives a ?rst variable as an argument, 
(iii) said ?rst variable is implemented in a ?xed point 
format at a single precision and (iv) said input value is 
implemented in said ?xed point format at a double pre 
cision; and 

means for storing a plurality of processor executable 
instructions, said instructions being con?gured to gen 
erate an output value by emulating a selected one of said 
?rst operations using said input value as said argument, 
Wherein (i) said emulation utiliZes said selected ?rst 
operation in said hardWare and (ii) said output value is 
implemented in said ?xed point format at said double 
precision. 


