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IMAGE PROCESSOR COMPRISING
GESTURE RECOGNITION SYSTEM WITH
COMPUTATIONALLY-EFFICIENT STATIC

HAND POSE RECOGNITION

FIELD

[0001] The field relates generally to image processing, and
more particularly to image processing for recognition of ges-
tures.

BACKGROUND

[0002] Image processing is important in a wide variety of
different applications, and such processing may involve two-
dimensional (2D) images, three-dimensional (3D) images, or
combinations of multiple images of different types. For
example, a3D image of a spatial scene may be generated in an
image processor using triangulation based on multiple 2D
images captured by respective cameras arranged such that
each camera has a different view of the scene. Alternatively, a
3D image can be generated directly using a depth imager such
as a structured light (SL) camera or a time of flight (ToF)
camera. These and other 3D images, which are also referred
to herein as depth images, are commonly utilized in machine
vision applications, including those involving gesture recog-
nition.

[0003] In a typical gesture recognition arrangement, raw
image data from an image sensor is usually subject to various
preprocessing operations. The preprocessed image data is
then subject to additional processing used to recognize ges-
tures in the context of particular gesture recognition applica-
tions. Such applications may be implemented, for example, in
video gaming systems, kiosks or other systems providing a
gesture-based user interface. These other systems include
various electronic consumer devices such as laptop comput-
ers, tablet computers, desktop computers, mobile phones and
television sets.

SUMMARY

[0004] In one embodiment, an image processing system
comprises an image processor having image processing cir-
cuitry and an associated memory. The image processor is
configured to implement a gesture recognition system com-
prising a static pose recognition module. The static pose
recognition module is configured to identify a hand region of
interest in at least one image, to perform a skeletonization
operation on the hand region of interest, to determine a main
direction of the hand region of interest utilizing a result of the
skeletonization operation, to perform a scanning operation on
the hand region of interest utilizing the determined main
direction to estimate a plurality of hand features that are
substantially invariant to hand orientation, and to recognize a
static pose of the hand region of interest based on the esti-
mated hand features.

[0005] By way of example only, performing a scanning
operation utilizing the determined main direction may com-
prise determining a plurality of lines perpendicular to a line of
the main direction, and scanning the hand region of interest
along the perpendicular lines.

[0006] Other embodiments of the invention include but are
not limited to methods, apparatus, systems, processing
devices, integrated circuits, and computer-readable storage
media having computer program code embodied therein.
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BRIEF DESCRIPTION OF THE DRAWINGS

[0007] FIG. 1 is a block diagram of an image processing
system comprising an image processor implementing a static
pose recognition module in an illustrative embodiment.
[0008] FIG. 2 is a flow diagram of an exemplary static pose
recognition process performed by the static pose recognition
module in the image processor of FIG. 1.

[0009] FIG. 3 is a flow diagram showing a more detailed
view of a process for determining a main direction of a hand
region of interest in one of the steps of the FIG. 2 process.
[0010] FIGS. 4, 5 and 6 illustrate the estimation of hand
features utilizing the main direction determined by the pro-
cess of FIG. 3.

DETAILED DESCRIPTION

[0011] Embodiments of the invention will be illustrated
herein in conjunction with exemplary image processing sys-
tems that include image processors or other types of process-
ing devices configured to perform gesture recognition. It
should be understood, however, that embodiments of the
invention are more generally applicable to any image pro-
cessing system or associated device or technique that involves
recognizing static poses in one or more images.

[0012] FIG. 1 shows an image processing system 100 in an
embodiment of the invention. The image processing system
100 comprises an image processor 102 that is configured for
communication over a network 104 with a plurality of pro-
cessing devices 106-1, 106-2, . .. 106-M. The image proces-
sor 102 implements a recognition subsystem 108 within a
gesture recognition (GR) system 110. The GR system 110 in
this embodiment processes input images 111 from one or
more image sources and provides corresponding GR-based
output 112. The GR-based output 112 may be supplied to one
or more of the processing devices 106 or to other system
components not specifically illustrated in this diagram.
[0013] The recognition subsystem 108 of GR system 110
more particularly comprises a static pose recognition module
114 and one or more other recognition modules 115. The
other recognition modules may comprise, for example,
respective recognition modules configured to recognize cur-
sor gestures and dynamic gestures. The operation of illustra-
tive embodiments of the GR system 110 of image processor
102 will be described in greater detail below in conjunction
with FIGS. 2 through 6.

[0014] The recognition subsystem 108 receives inputs from
additional subsystems 116, which may comprise one or more
image processing subsystems configured to implement func-
tional blocks associated with gesture recognition in the GR
system 110, such as, for example, functional blocks for input
frame acquisition, noise reduction, background estimation
and removal, or other types of preprocessing. In some
embodiments, the background estimation and removal block
is implemented as a separate subsystem that is applied to an
input image after a preprocessing block is applied to the
image.

[0015] Exemplary noise reduction techniques suitable for
use in the GR system 110 are described in PCT International
Application PCT/US13/56937, filed on Aug. 28, 2013 and
entitled “Image Processor With Edge-Preserving Noise Sup-
pression Functionality,” which is commonly assigned here-
with and incorporated by reference herein.

[0016] Exemplary background estimation and removal
techniques suitable for use in the GR system 110 are
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described in Russian Patent Application No. 2013135506,
filed Jul. 29, 2013 and entitled “Image Processor Configured
for Efficient Estimation and Elimination of Background
Information in Images,” which is commonly assigned here-
with and incorporated by reference herein.

[0017] Itshould be understood, however, that these particu-
lar functional blocks are exemplary only, and other embodi-
ments of the invention can be configured using other arrange-
ments of additional or alternative functional blocks.

[0018] In the FIG. 1 embodiment, the recognition sub-
system 108 generates GR events for consumption by one or
more of a set of GR applications 118. For example, the GR
events may comprise information indicative of recognition of
one or more particular gestures within one or more frames of
the input images 111, such that a given GR application in the
set of GR applications 118 can translate that information into
a particular command or set of commands to be executed by
that application. Accordingly, the recognition subsystem 108
recognizes within the image a gesture from a specified ges-
ture vocabulary and generates a corresponding gesture pat-
tern identifier (ID) and possibly additional related parameters
for delivery to one or more of the applications 118. The
configuration of such information is adapted in accordance
with the specific needs of the application.

[0019] Additionally or alternatively, the GR system 110
may provide GR events or other information, possibly gen-
erated by one or more of the GR applications 118, as GR-
based output 112. Such output may be provided to one or
more of the processing devices 106. In other embodiments, at
least a portion of set of GR applications 118 is implemented
at least in part on one or more of the processing devices 106.
[0020] Portions of the GR system 110 may be implemented
using separate processing layers of the image processor 102.
These processing layers comprise at least a portion of what is
more generally referred to herein as “image processing cir-
cuitry” of the image processor 102. For example, the image
processor 102 may comprise a preprocessing layer imple-
menting a preprocessing module and a plurality of higher
processing layers for performing other functions associated
with recognition of gestures within frames of an input image
stream comprising the input images 111. Such processing
layers may also be implemented in the form of respective
subsystems of the GR system 110.

[0021] It should be noted, however, that embodiments of
the invention are not limited to recognition of static or
dynamic hand gestures, but can instead be adapted for use in
awide variety of other machine vision applications involving
gesture recognition, and may comprise different numbers,
types and arrangements of modules, subsystems, processing
layers and associated functional blocks.

[0022] Also, certain processing operations associated with
the image processor 102 in the present embodiment may
instead be implemented at least in part on other devices in
other embodiments. For example, preprocessing operations
may be implemented at least in part in an image source
comprising a depth imager or other type of imager that pro-
vides at least a portion of the input images 111. It is also
possible that one or more of the applications 118 may be
implemented on a different processing device than the sub-
systems 108 and 116, such as one of the processing devices
106.

[0023] Moreover, it is to be appreciated that the image
processor 102 may itself comprise multiple distinct process-
ing devices, such that different portions of the GR system 110
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are implemented using two or more processing devices. The
term “image processor” as used herein is intended to be
broadly construed so as to encompass these and other
arrangements.

[0024] The GR system 110 performs preprocessing opera-
tions on received input images 111 from one or more image
sources. This received image data in the present embodiment
is assumed to comprise raw image data received from a depth
sensor, but other types of received image data may be pro-
cessed in other embodiments. Such preprocessing operations
may include noise reduction and background removal.
[0025] The raw image data received by the GR system 110
from the depth sensor may include a stream of frames com-
prising respective depth images, with each such depth image
comprising a plurality of depth image pixels. For example, a
given depth image D may be provided to the GR system 110
in the form of a matrix of real values. A given such depth
image is also referred to herein as a depth map.

[0026] A wide variety of other types of images or combi-
nations of multiple images may be used in other embodi-
ments. It should therefore be understood that the term
“image” as used herein is intended to be broadly construed.
[0027] The image processor 102 may interface with a vari-
ety of different image sources and image destinations. For
example, the image processor 102 may receive input images
111 from one or more image sources and provide processed
images as part of GR-based output 112 to one or more image
destinations. At least a subset of such image sources and
image destinations may be implemented as least in part uti-
lizing one or more of the processing devices 106.

[0028] Accordingly, at least a subset of the input images
111 may be provided to the image processor 102 over network
104 for processing from one or more of the processing
devices 106. Similarly, processed images or other related
GR-based output 112 may be delivered by the image proces-
sor 102 over network 104 to one or more of the processing
devices 106. Such processing devices may therefore be
viewed as examples of image sources or image destinations as
those terms are used herein.

[0029] A given image source may comprise, for example, a
3D imager such as an SI camera or a ToF camera configured
to generate depth images, or a 2D imager configured to gen-
erate grayscale images, color images, infrared images or
other types of 2D images. It is also possible that a single
imager or other image source can provide both a depth image
and a corresponding 2D image such as a grayscale image, a
color image or an infrared image. For example, certain types
of existing 3D cameras are able to produce a depth map of a
given scene as well as a 2D image of the same scene. Alter-
natively, a 3D imager providing a depth map of a given scene
can be arranged in proximity to a separate high-resolution
video camera or other 2D imager providing a 2D image of
substantially the same scene.

[0030] Another example of an image source is a storage
device or server that provides images to the image processor
102 for processing,

[0031] A given image destination may comprise, for
example, one or more display screens of a human-machine
interface of a computer or mobile phone, or at least one
storage device or server that receives processed images from
the image processor 102.

[0032] Itshould also be noted that the image processor 102
may be at least partially combined with at least a subset of the
one or more image sources and the one or more image desti-
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nations on acommon processing device. Thus, for example, a
given image source and the image processor 102 may be
collectively implemented on the same processing device.
Similarly, a given image destination and the image processor
102 may be collectively implemented on the same processing
device.

[0033] Inthepresent embodiment, the image processor 102
is configured to recognize hand gestures, although the dis-
closed techniques can be adapted in a straightforward manner
for use with other types of gesture recognition processes.
[0034] Asnotedabove, the input images 111 may comprise
respective depth images generated by a depth imager such as
an SL camera or a ToF camera. Other types and arrangements
of images may be received, processed and generated in other
embodiments, including 2D images or combinations of 2D
and 3D images.

[0035] The particular arrangement of subsystems, applica-
tions and other components shown in image processor 102 in
the FIG. 1 embodiment can be varied in other embodiments.
For example, an otherwise conventional image processing
integrated circuit or other type of image processing circuitry
suitably modified to perform processing operations as dis-
closed herein may be used to implement at least a portion of
one or more of the components 114, 115, 116 and 118 of
image processor 102. One possible example of image pro-
cessing circuitry that may be used in one or more embodi-
ments of the invention is an otherwise conventional graphics
processor suitably reconfigured to perform functionality
associated with one or more of the components 114, 115,116
and 118.

[0036] The processing devices 106 may comprise, for
example, computers, mobile phones, servers or storage
devices, in any combination. One or more such devices also
may include, for example, display screens or other user inter-
faces that are utilized to present images generated by the
image processor 102, The processing devices 106 may there-
fore comprise a wide variety of different destination devices
that receive processed image streams or other types of GR-
based output 112 from the image processor 102 over the
network 104, including by way of example at least one server
or storage device that receives one or more processed image
streams from the image processor 102.

[0037] Although shown as being separate from the process-
ing devices 106 in the present embodiment, the image pro-
cessor 102 may be at least partially combined with one or
more of the processing devices 106. Thus, for example, the
image processor 102 may be implemented at least in part
using a given one of the processing devices 106. As a more
particular example, a computer or mobile phone may be con-
figured to incorporate the image processor 102 and possibly a
given image source. Image sources utilized to provide input
images 111 in the image processing system 100 may there-
fore comprise cameras or other imagers associated with a
computer, mobile phone or other processing device. As indi-
cated previously, the image processor 102 may be at least
partially combined with one or more image sources or image
destinations on a common processing device.

[0038] Theimage processor 102 inthe present embodiment
is assumed to be implemented using at least one processing
device and comprises a processor 120 coupled to a memory
122. The processor 120 executes software code stored in the
memory 122 in order to control the performance of image
processing operations. The image processor 102 also com-
prises a network interface 124 that supports communication
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over network 104. The network interface 124 may comprise
one or more conventional transceivers. In other embodiments,
the image processor 102 need not be configured for commu-
nication with other devices over a network, and in such
embodiments the network interface 124 may be eliminated.
[0039] The processor 120 may comprise, for example, a
microprocessor, an application-specific integrated circuit
(ASIC), a field-programmable gate array (FPGA), a central
processing unit (CPU), an arithmetic logic unit (ALU), a
digital signal processor (DSP), or other similar processing
device component, as well as other types and arrangements of
image processing circuitry, in any combination.

[0040] The memory 122 stores software code for execution
by the processor 120 in implementing portions of the func-
tionality of image processor 102, such as the subsystems 108
and 116 and the GR applications 118. A given such memory
that stores software code for execution by a corresponding
processor is an example of what is more generally referred to
herein as a computer-readable medium or other type of com-
puter program product having computer program code
embodied therein, and may comprise, for example, electronic
memory such as random access memory (RAM) or read-only
memory (ROM), magnetic memory, optical memory, or other
types of storage devices in any combination. As indicated
above, the processor may comprise portions or combinations
of a microprocessor, ASIC, FPGA, CPU, ALU, DSP or other
image processing circuitry.

[0041] It should also be appreciated that embodiments of
the invention may be implemented in the form of integrated
circuits. In a given such integrated circuit implementation,
identical die are typically formed in a repeated pattern on a
surface of a semiconductor wafer. Each die includes an image
processor or other image processing circuitry as described
herein, and may include other structures or circuits. The indi-
vidual die are cut or diced from the wafer, then packaged as an
integrated circuit. One skilled in the art would know how to
dice wafers and package die to produce integrated circuits.
Integrated circuits so manufactured are considered embodi-
ments of the invention.

[0042] The particular configuration of image processing
system 100 as shown in FIG. 1 is exemplary only, and the
system 100 in other embodiments may include other elements
in addition to or in place of those specifically shown, includ-
ing one or more elements of a type commonly found in a
conventional implementation of such a system.

[0043] For example, in some embodiments, the image pro-
cessing system 100 is implemented as a video gaming system
or other type of gesture-based system that processes image
streams in order to recognize user gestures. The disclosed
techniques can be similarly adapted for use in a wide variety
of other systems requiring a gesture-based human-machine
interface, and can also be applied to other applications, such
as machine vision systems in robotics and other industrial
applications that utilize gesture recognition.

[0044]  Also, as indicated above, embodiments of the inven-
tion are not limited to use in recognition of hand gestures, but
can be applied to other types of gestures as well. The term
“gesture” as used herein is therefore intended to be broadly
construed.

[0045] The operation of the GR system 110 of image pro-
cessor 102 will now be described in greater detail with refer-
ence to the diagrams of FIGS. 2 through 6.

[0046] Tt is assumed in these embodiments that the input
images 111 received in the image processor 102 from an
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image source comprise input depth images each referred to as
aninput frame. As indicated above, this source may comprise
a depth imager such as an SL or ToF camera comprising a
depth image sensor. Other types of image sensors including,
for example, grayscale image sensors, color image sensors or
infrared image sensors, may be used in other embodiments. A
given image sensor typically provides image data in the form
of'one or more rectangular matrices ofreal or integer numbers
corresponding to respective input image pixels. These matri-
ces can contain per-pixel information such as depth values
and corresponding amplitude or intensity values. Other per-
pixel information such as color, phase and validity may addi-
tionally or alternatively be provided.

[0047] Referring now to FIG. 2, a process 200 performed
by the static pose recognition module 114 in an illustrative
embodiment is shown. The process is assumed to be applied
to preprocessed image frames received from a preprocessing
subsystem of the set of additional subsystems 116. The pre-
processing subsystem performs noise reduction and back-
ground estimation and removal, using techniques such as
those identified above. The image frames are received by the
preprocessing system as raw image data from an image sensor
of'a depth imager such as a ToF camera or other type of ToF
imager. The image sensor in this embodiment is assumed to
comprise a variable frame rate image sensor, such as a ToF
image sensor configured to operate at a variable frame rate.
Accordingly, in the present embodiment, the static pose rec-
ognition module 114 can operate at a lower frame rate than
other recognition modules 115, such as recognition modules
configured to recognize cursor gestures and dynamic ges-
tures. Other types of sources supporting variable or fixed
frame rates can be used in other embodiments.

[0048] The process 200 includes the following steps:
[0049] 1. Find hand region of interest (ROI);

[0050] 2. Find hand skeleton;

[0051] 3. Find hand main direction;

[0052] 4. Find palm boundary;

[0053] 5. Scan hand image;

[0054] 6. Estimate hand features;

[0055] 7. Normalize hand features; and

[0056] 8. Recognition based on classification.

[0057] Each of the above-listed steps of the process 200

will be described in greater detail below. In other embodi-
ments, certain steps may be combined with one another, or
additional or alternative steps may be used.

[0058] Step 1. Find Hand ROI

[0059] This step in the present embodiment more particu-
larly involves defining an ROl mask for a hand in the input
image. The ROI mask is implemented as a binary mask in the
form of an image, also referred to herein as a “hand image,” in
which pixels within the ROI are have a certain binary value,
illustratively a logic 1 value, and pixels outside the ROI have
the complementary binary value, illustratively alogic 0 value.
The ROI corresponds to a hand within the input image, and is
therefore also referred to herein as a hand ROI. An example of
an ROI mask comprising a hand ROI can be seen in FIGS. 4
through 6 in the context of estimation of hand features. With
reference to FIG. 5, the ROI mask is shown with 1-valued or
“white” pixels identifying those pixels within the ROI, and
0-valued or “black” pixels identifying those pixels outside of
the ROI. It can be seen that the hand ROI in example of FIGS.
4,5 and 6 is in the form of a particular type of static hand pose,
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namely, a “fingergun” static hand pose. This is one of multiple
static hand poses that may be recognized using the process
200.

[0060] As noted above, the input image in which the hand
ROl is identified in Step 1 is assumed to be supplied by a ToF
imager. Such a ToF imager typically comprises a light emit-
ting diode (LED) light source that illuminates an imaged
scene. Distance is measured based on the time difference
between the emission of light onto the scene from the LED
source and the receipt at the image sensor of corresponding
light reflected back from objects in the scene. Using the speed
of light, one can calculate the distance to a given point on an
imaged object for a particular pixel as a function of the time
difference between emitting the incident light and receiving
the reflected light. More particularly, distance d to the given
point can be computed as follows:

| 3

where T is the time difference between emitting the incident
light and receiving the reflected light, ¢ is the speed of light,
and the constant factor 2 is due to the fact that the light passes
through the distance twice, as incident light from the light
source to the object and as reflected light from the object back
to the image sensor. This distance is more generally referred
to herein as a depth value.

[0061] The time difference between emitting and receiving
light may be measured, for example, by using a periodic light
signal, such as a sinusoidal light signal or a triangle wave light
signal, and measuring the phase shift between the emitted
periodic light signal and the reflected periodic signal received
back at the image sensor.

[0062] Assuming the use of a sinusoidal light signal, the
ToF imager can be configured, for example, to calculate a
correlation function ¢(t) between input reflected signal s(t)
and output emitted signal g(t) shifted by predefined value~, in
accordance with the following equation:

1 T
o(r) = lim =

s(t)g(t+)dr.
T-o T Jrp

[0063] In such an embodiment, the ToF imager is more
particularly configured to utilize multiple phase images, cor-
responding to respective predefined phase shifts T, given by
nr/2, where n=0, . . ., 3. Accordingly, in order to compute
depth and amplitude values for a given image pixel, the ToF
imager obtains four correlation values (A,, . . . A;), where
A, =c(t,), and uses the following equations to calculate phase
shift ¢ and amplitude o

A3 —Ap
(P =arL‘l‘g[A0 _Az]‘

(Ay— AP +(Ag— A .

] —

a=

The phase images in this embodiment comprise respective
sets of A, A, A, and A correlation values computed for a set
of image pixels. Using the phase shift ¢, a depth value d can
be calculated for a given image pixel as follows:
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where o is the frequency of emitted signal and ¢ is the speed
of light. These computations are repeated to generate depth
and amplitude values for other image pixels. The resulting
raw image data is transferred from the image sensor to inter-
nal memory of the image processor 102 for preprocessing in
the manner previously described.

[0064] The hand ROI can be identified in the preprocessed
image using any of a variety of techniques. For example, it is
possible to utilize the techniques disclosed in the above-cited
Russian Patent Application No. 2013135506 to determine the
hand ROI. Accordingly, the first step of the process 200 may
be implemented in a preprocessing block of the GR system
110 rather than in the static pose recognition module 114.
[0065] As another example, the hand ROI can be deter-
mined using threshold logic applied to depth and amplitude
values of the image. This can be more particularly imple-
mented as follows:

[0066] 1. If the amplitude values are known for respective
pixels of the image, one can select only those pixels with
amplitude values greater than some predefined threshold.
This approach is applicable not only for images from ToF
imagers, but also for images from other types of imagers, such
as infrared imagers with active lighting. For both ToF imagers
and infrared imagers with active lighting, the closer an object
is to the imager, the higher the amplitude values of the corre-
sponding image pixels, not taking into account reflecting
materials. Accordingly, selecting only pixels with relatively
high amplitude values allows one to preserve close objects
from an imaged scene and to eliminate far objects from the
imaged scene. It should be noted that for ToF imagers, pixels
with lower amplitude values tend to have higher error in their
corresponding depth values, and so removing pixels with low
amplitude values additionally protects one from using incor-
rect depth information.

[0067] 2.Ifthedepth values are known for respective pixels
of the image, one can select only those pixels with depth
values falling between predefined minimum and maximum
threshold depths Dmin and Dmax. These thresholds are set to
appropriate distances between which the hand 1s expected to
be located within the image.

[0068] 3. Opening or closing morphological operations uti-
lizing erosion and dilation operators can be applied to remove
dots and holes as well as other spatial noise in the image.
[0069] One possible implementation of a threshold-based
ROI determination technique using both amplitude and depth
thresholds is as follows:

[0070] 1. Set ROI,=0 for eachiand j.

[0071] 2. Foreach depth pixel d,; set ROI =1 ifd, »d,,,, and
d=d,,.
[({072] 3.Foreach amplitude pixel a,; set ROI, =1 ifa,>a,,,,.
[0073] 4. Coherently apply an opening morphological
operation comprising erosion followed by dilation to both
ROl and its complement to remove dots and holes comprising
connected regions of ones and zeros having area less than a
minimum threshold area A .

[0074] The output of the above-described ROI determina-
tion process is a binary ROI mask for the hand in the image.
It can be in the form of an image having the same size as the
input image, or a sub-image containing only those pixels that
are part of the ROIL. For further description below, it is
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assumed that the ROI mask is an image having the same size
as the input image. As mentioned previously, the ROl mask is
also referred to herein as a “hand image” and the RO itself
within the ROI mask is referred to as a “hand ROI.” The
output may include additional information such as an average
of the depth values for the pixels in the ROI. This average of
depth values for the ROI pixels is denoted elsewhere herein as
mean”.

[0075] Step 2. Find Hand Skeleton

[0076] Two exemplary techniques are described below for
determining the hand skeleton in the hand image. These tech-
niques are examples of what are more generally referred to
herein as skeletonization operations, and other types of skel-
etonization operations can be used in other embodiments. The
first exemplary technique below, denoted Technique A, 1s less
computationally complex but also less precise than the sec-
ond exemplary technique, denoted Technique B.

[0077] Technique A

[0078] For each row of the hand image containing at least
one pixel of the ROI, store the middle point between the
outermost left and right 1 values in the row as the skeleton
value for that row. The hand skeleton comprises the set of
stored points for the respective rows.

[0079] Technique B

[0080] 1. Apply a closing morphological operation, com-
prising dilation followed by erosion, to the hand image in
order to maximally conglutinate the top four fingers, resulting
in what is referred to herein as a “closed” hand image. Aver-
age typical distance between open fingers may be used as a
pattern size for both dilation and erosion operations.

[0081] 2. Calculate the distance transform of the closed
hand image. More particularly, for each pixel in the RO,
calculate the minimal distance from the ROI boundaries using
specified distance metrics, such as, for example, Euclidian or
Manhattan distance metrics. Boundaries ona binary mask can
be identified as pixels with value 1 having at least one neigh-
bor pixel with value 0. The distance transform outside of the
ROT 15 0. The result of the distance transform calculation is a
distance transform matrix DT=(dt),;.

[0082] 3. For each row i in which there is at least one ROI
pixel, compute dtmax =maxt,, and add to the skeleton all
points (i,];), . . ., (i, jz) s0 that forall k=1 . . . ki, dt,; =dt max,.
There can be more than a single local maximum in each row,
so k can be greater than 1, but usually k=1.

[0083] Forboth Techniques A and B above, the resulting set
of points is referred to herein as the hand skeleton SK={(i,,
Ji)s -+ > (pe J1s) - Where SK is the set of skeleton points, and
the cardinality of SK is ks.

[0084] Step 3. Find Hand Main Direction

[0085] Exemplary techniques for finding the hand main
direction described below include one of substeps la and 1b,
each possibly combined with an optional substep 2.

[0086] 1a. Approximate the set of points in the hand skel-
eton SK={(i,j;), . .- , (izssj1.)} by aprediction line using Least
Mean Squares (LMS). It should be noted that the main direc-
tion is usually vertical or near-vertical. Accordingly, the angle
of variation of the prediction line from the vertical axis is
usually smaller than 45 degrees. Using abscissa x and ordi-
nate v to indicate respective row and column numbers, the
main direction is given by a prediction line y=a*x+b that
minimizes the following quadratic functional:
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ks
Frus = Z(ail +b—jl)2 - min.
=1

[0087] It is possible to reverse the above definition of
abscissa and ordinate so as to indicate respective column and
row numbers, although the resulting prediction quality for
main directions close to vertical is typically not as good.
[0088] The minimization above can be obtained by solving
a system of two linear equations given by dF; ,,;/da=0 and
dF;,,/db=0. This system of equations can be solved, for
example, by computing a=(ks*Mxy-Mx*My)/(ks*Mxx-
Mx*Mx), b=(My-Mx*a)/ks, where Mxy is a mixed raw
moment for x,y, Mxx is a second-order raw moment for x,
Myy is a second-order raw moment for y, Mx is a first-order
raw moment for x, and My is a first-order raw moment for y.
Other techniques can be used for solving the system of equa-
tions.

[0089] 1b. Approximate the set of points in the hand skel-
eton SK={(i,, j,), - - -, (izes js)} by a prediction line using
Principal Component Analysis (PCA). In this embodiment,
PCA determines the cigcnvector corresponding to the largest
eigenvalue of a covariance matrix CSK for a centered set
SKe={(i;-14 j;=io)s - - -  (Gy=1p» ;=jo) }, Where 1. is a mean row
value and j_. is a mean column value for the skeleton points.
The line y=a*x+b is then determined as a=—2*mxy/(myy-
mxx), b=j_-1,.%a, where mxy is a mixed centered moment for
X,y, mxx is a second-order centered moment for x, and myy is
a second-order centered moment for y.

[0090] 2. Compute the average deviation d of distances
between points of the skeleton and the prediction line found
during substep 1a or 1b above, and remove all points of the
skeleton with deviation greater than k3, where k>0 (e.g.,
k=3). The removed points are also referred to herein as “out-
liers.” In order to simplify the calculations in this substep,
Cartesian distance can be substituted by difference in y (i.e.,
column) coordinates of points. Substep la or 1b is then rerun
to obtain a new estimate of the main direction. Substep 2 can
be repeated until the set of points removed is empty.

[0091] Aftera given prediction line y=a*x+b is determined
in substeps 1a or 1b above, the angle between the vertical axis
and prediction line can be computed as angle=-arctg(a),
where arctg denotes “arctangent.” This angle is an example of
what is more generally referred to herein as a “main direc-
tion” of a hand. Accordingly, hand main direction can be
characterized by the prediction line itself, by an angle made
by the prediction line relative to the vertical axis, or by other
information based on the prediction line.

[0092] FIG. 3illustrates an exemplary process of determin-
ing a main direction of a hand using the above-described
substeps. The process starts with a skeleton 300 and includes
steps 302 through 310. In step 302, the prediction line
y=a*x+b is found using either the LMS or PCA method of
respective substeps 1a or 1b. In step 304, the main direction of
the hand is determined by computing the angle=-arctg(a). In
step 306, any outliers are determined, as those points of the
skeleton having a distance from the prediction line that is
greater than greater than kd. If the number of outliers is
determined to be greater than zero in step 308, the outliers are
excluded from the skeleton in step 310, and otherwise the
process ends by outputting the angle and the prediction line
parameters a and b as indicated in step 312. From step 310, a
feedback line 314 returns the process to step 302 to recompute
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the prediction line with the outliers excluded from the skel-
eton as described in substep 2 above. Each time the process is
repeated, additional outliers are excluded via step 310 and the
prediction line is recomputed in step 302 using the resulting
reduced set of skeleton points. The feedback may be limited
to a specified maximum number of passes through the pro-
cess.

[0093] Step 4. Find Palm Boundary

[0094] This step in the present embodiment more particu-
larly involves defining the palm boundary and removing from
the ROI any pixels below the palm boundary, leaving essen-
tially only the palm and fingers in a modified hand image.
Such a step advantageously eliminates, for example, any por-
tions of the arm from the wrist to the elbow, as these portions
can be highly variable due to the presence of items such as
sleeves, wristwatches and bracelets, and in any event are
typically not useful for static hand pose recognition.

[0095] Exemplary techniques that are suitable for use in
implementing the palm boundary determination in the
present embodiment are described in Russian Patent Appli-
cation No. 2013134325, filed Jul. 22, 2013 and entitled “Ges-
ture Recognition Method and Apparatus Based on Analysis of
Multiple Candidate Boundaries,” which is commonly
assigned herewith and incorporated by reference herein.
[0096] Alternative techniques can be used. For example,
the palm boundary may be determined by taking into account
that the typical length of the human hand is about 20-25
centimeters (cm), and removing from the ROI all pixels
located farther than a 25 cm threshold distance from the
uppermost fingertip along the previously-determined main
direction of the hand. The uppermost fingertip can be identi-
fied as the uppermost point of the hand skeleton or as the
uppermost 1 value in the binary ROI mask. The 25 cm thresh-
old can be converted to a particular number of image pixels by
using an average depth value determined for the pixels in the
ROI as mentioned in conjunction with the description of Step
1 above.

[0097] Step 5. Scan Hand Image

[0098] This step in the present embodiment more particu-
larly involves scanning the modified hand image resulting
from Step 4. The scanning is performed line-by-line over
lines that are perpendicular to the main direction line previ-
ously determined in Step 3. In conjunction with this step, the
ROI mask is effectively modified so as to correspond to a
vertically-oriented hand. This can be achieved by rotating the
existing ROl mask by an angle a, where o is the angle
between the main direction and the vertical axis as deter-
mined in Step 3, but such rotation is not computationally
efficient for binary masks. Instead, perpendiculars to the main
direction line are determined, and the hand image is scanned
line-by-line along such perpendiculars. The latter approach
may be considered a type of “virtual” rotation of the ROI
mask, as opposed to a “real” rotation of the ROI mask by the
angle a.

[0099] Two exemplary techniques are described below for
determining a perpendicular to the main direction line,
although other techniques can be used in other embodiments.
The first exemplary technique below, denoted Technique A, is
less computationally complex but also less precise than the
second exemplary technique, denoted Technique B.

[0100] Technique A

[0101] Let y=A*x+B be a perpendicular to the main direc-
tion, assuming that the main direction cannot be a horizontal
line. Let W be the width of the hand ROI, given by the
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difference between the column numbers of the leftmost and
the rightmost ROI pixels. Then for each value of x=1 ... W let
y[x]=round(Ax+B), where round(x) denotes the closest inte-
ger value to x. The array of y[x], x=1 ... W forms a discrete
perpendicular to the main direction. Movement of the discrete
perpendicular from the top image row to the bottom image
row with a step size equal to 1 pixel between adjacent
instances of the perpendicular will cover the entire image.
However, the resulting ROI mask will have non-square pixels,
such that correction coefficients (1/sin(ct) and 1/cos(at)) are
used to normalize the hand features in Step 7.

[0102] Technique B

[0103] This technique uses the angle a to calculate the
perpendicular to the main direction, but scans using precise
steps that are equal to 1 pixel both for movement alonga given
perpendicular to the main direction line and for movement
along the main direction line from perpendicular to perpen-
dicular. The coordinates can be rounded to nearest integer
values or various types of interpolation (e.g., bilinear, bi-
cubic, etc.) can be applied.

[0104] The following pseudocode example illustrates the
technique in more detail. In this pseudocode example, the
notation (jtip,itip) identifies the coordinates of the uppermost
pixel in the hand ROL

s#define W 165 // Image width

#define H 120 // Image height

find_hand_ direction(skeleton, a, b); // skeleton - input; a, b - output
float ¢ = itip + a*jtip; // perpendicular line crossing point (jtip,itip):
y=-a*x+c¢

float alpha = arctg(a), sina = sin(alpha), cosa = cos (alpha);

float xx[165], yy[165];

for (int j=0; j<W: j++) { xx[j] = jtip + (j-W/2)*cosa; yy[j] = -a * xx [j]
+c |

cvi:Mat mask; mask.create(H, W, CV_32F) ; mask = 0.0f;

#define INSIDE(x,y) (y>=1 && y<=H-2 && x>=1 && x<=W-2)
jleft =W-1; jright = 0;

int itop = H-1; ibottom = 0;

for (int i=0; i<H; i++)

{

for (int j=0; j<W; j++)

if (INSIDExx[jl.yy[i]) &&
rol.at<float>(int(yy[j]),int(xx[j]))>=0.50)

Jleft=min(jleft,j}; jright=max(jright,i);
itop=min(itop,i); ibottom=max(ibottom,i);
mask.at<float>(i,)) = 1.0

xx[j] += sina; yy[j] += cosa;

if (yy[0]>1I-1 && yy[W-1]>H-1) break;

[0105] Application of either of the above techniques results
in an ROI mask that is effectively modified so as to corre-
spond to a vertically-oriented hand. This modified ROI mask
is also referred to herein as a vertically-oriented ROl mask. As
mentioned previously, it is possible to obtain the modified
ROI mask by performing a real rotation of the hand ROI by
the angle o, although such a rotation would typically be less
efficient than the exemplary virtual rotation techniques
described above.

[0106] It should also be noted that at least a portion of the
hand feature estimations described in Step 6 below may be
performed in conjunction with the above-described scanning
process. Ifin a given embodiment it is possible to calculate all
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of the desired hand features using a single pass of image
scanning, one need not store the vertically-oriented ROl mask
itself.

[0107] Step 6. Estimate Hand Features

[0108] This step generally involves estimating hand fea-
tures using the vertically-oriented ROl mask described above.
The estimated hand features, after any needed normalization
in Step 7, are provided as input to classifiers configured to
recognize particular static poses in Step 8. As mentioned
previously, the estimation of the hand features can be per-
formed as part of the image scanning of Step 5, in which case
both Step 5 and Step 6 can be performed as a single combined
step of the process 200. Atleast portions of Step 7 may also be
implemented in such a combined step.

[0109] The use of a vertically-oriented ROI mask to esti-
mate the hand features advantageously reduces the dimen-
sionality of the operation and therefore improves its perfor-
mance.

[0110] The hand features determined using the vertically-
oriented ROI mask in Step 6 include at least a subset of the
following features:

[0111] 1. Square root of the hand area, where the hand area
is defined as the number of ROI pixels with value 1.

[0112] 2. Perimeter of the hand, given by the number of
ROI pixels with value 1 which have atleast one neighbor pixel
with value 0.

[0113] 3. Width of the hand, given by the difference
between the column numbers of the leftmost and the right-
most ROI pixels.

[0114] 4. Height of the hand, given by the difference
between the row numbers of the uppermost and the lower-
most ROI pixels.

[0115] 5. Second-order centered moments for x and y coor-
dinates of the ROI pixels.

[0116] 6. Square root of the top finger area, where the top
finger area is defined as the number of ROI pixels that are not
farther than h,,, cm from the uppermost ROI pixel. An exem-
plary value for h,,, is h,,,=2, although other values could be
used. The top finger area used in this feature is illustrated in
FIG. 4 as the darkened portion of the tip of the pointing finger.
The line 400 indicates the main direction line of the hand in
the ROI mask.

[0117] 7. Square root of the side finger area, where the side
finger area is defined as the minimum of the number of ROI
pixels that are not farther than h;,; cm from the leftmost ROI
pixel and the number of ROI pixels that are not farther than
h,,.s,, cm from rightmost ROI pixel. Exemplary values for h,,,
andh,,;, areh, =2 andh,, , =2, although again other values
could be used. The side finger area computation is performed
by minimization element 402 in FIG. 4 using the darkened
areas shown at left and right sides of the ROI mask.

[0118] 8. Degree of non-convexity, given by the square root
of the number of pixels with value 0 that are bordered by at
least two ROI pixels with value 1 as determined while scan-
ning the hand image along perpendiculars to the main direc-
tion as per Step 5. This is illustrated in FIG. 5, which shows a
set of mask scanning lines 500 corresponding to respective
perpendiculars of the main direction line 400 of the ROI
mask. The identified 0-valued pixels are in two regions of the
image, one in the trough between the thumb and forefinger
and the other between a pair of knuckles of the hand, and the
numbers of pixels in these two regions are combined by a
summing element 502. The output of the summing element
502 is subject to a square root operation not specifically
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illustrated in the figure in order to generate the feature. The
degree of non-convexity is equal to zero for all convex ROIs.
[0119] 9. Degree of “egg-likeness.” Assume that the height
ofthehandis H, and thatw =W ,, w,=W, ,and w,=W, , are
the widths of the hand at respective heights h,='4*H,
h,="4*H and h,=%*H. Using the three points (h,, w,), (h,,
w,)and (hy, w;) in two-dimensional space, find a parabola of
the form w(h)=a,*h*+a,*h+a, that goes through all three
points. This feature is illustrated in FIG. 6, based on a mask
profile 600 used to generate a parabola 602. The degree of
“egg-likeness™ is illustratively given by the curvature of the
parabola as expressed by the first coefficient a,.

[0120] The above-described hand features can all be calcu-
lated at relatively low complexity using one or at most two
scanning passes through the ROI mask.

[0121] It should be noted that the above-described hand
features are exemplary only, and additional or alternative
hand features may be utilized to facilitate static pose recog-
nition in other embodiments. For example, various functions
of one or more of the above-described hand features or other
related hand features may be used as additional or alternative
hand features. Thus, functions other than square root may be
used in conjunction with hand area, top finger area, side finger
area or other features. Also, techniques other than those
described above may be used to compute the features.
[0122] The particular number of features utilized in a given
embodiment will typically depend on factors such as the
number of different hand pose classes to be recognized, the
shape of an average hand inside each class, and the recogni-
tion quality requirements. Techniques such as Monte-Carlo
simulations or genetic search algorithms can be utilized to
determine an optimal subset of the features for given levels of
computational complexity and recognition quality.

[0123] As one example, a pointing gesture detector having
only three distinct classes, corresponding to pointing forefin-
ger, pointing forefinger with open thumb (“fingergun™), and
all other static hand poses, respectively, can achieve an
approximately 0.995 recognition rate using the subset of fea-
tures 1,2,3, 6,7 and 8.

[0124] Step 7. Normalize Hand Features

[0125] The previously-described steps result in an arrange-
ment in which hand features are invariant to certain image
transformations, such as rotation and movement. However,
the hand features may also be made invariant to scaling by
applying feature normalization as will now be described. It
should again be noted that if Technique A is utilized for hand
image scanning in Step 5, correction coefficients should be
applied to take into account that the pixels of the scanned ROI
mask are no longer square, although application of such cor-
rection coefficients does not significantly increase computa-
tional complexity.

[0126] The additional feature normalization can then be
implemented as follows. If the average depth value for the
ROI pixels is not available, linear features such as width,
height and perimeter are normalized by dividing each such
linear feature by the square root of the hand area, while
second order features such as moments are normalized by
dividing each such second order feature by the hand area
itself. If the average depth value for the ROI pixels is avail-
able, linear features are instead multiplied by the average
depth value and second order features are multiplied by the
square of the average depth value.

[0127] The latter normalization based on the average depth
value can be better understood by considering the correspon-
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dence between the size of a portion of an imaged object as
captured in a given pixel and the size of that portion of the
imaged object in real units (e.g., meters). This correspon-
dence can be computed as pixel_size_in_meters=mean7Z*tan
(horzFOV/2)/(W/2), where meanZ. denotes the average depth
value as mentioned in conjunction with Step 1 above, W
denotes hand width, and horzFOV denotes horizontal angle
of field of view (e.g., 90 degrees). The normalized feature is
then given by normalized_feature_in_meters=feature_in_
pixels*pixel_size_in_meters. It is therefore apparent that lin-
ear features should be multiplied by a coefficient proportional
to the average depth value, and that features of higher order
should be multiplied by a coefficient proportional to the aver-
age depth value to that order, as in the normalization previ-
ously described.

[0128] Step 8. Recognition Based on Classification
[0129] In this step, classification techniques are applied to
recognize static hand poses based on the normalized hand
features from Step 7. Examples of static pose classes that may
be utilized in a given embodiment include finger, palm with
fingers, palm without fingers, hand edge, pinch, fist, finger-
gun and head. Each static pose class utilizes a corresponding
classifier configured in accordance with a classification tech-
nique such as, for example, Gaussian Mixture Models
(GMMs), Nearest Neighbor, Decision Trees, and Neural Net-
works. Additional details regarding the use of classifiers
based on GMM s in the recognition of static hand poses can be
found in the above-cited Russian Patent Application No.
2013134325.

[0130] The particular types and arrangements of processing
blocks shown in the embodiments of FIGS. 2 and 3 are exem-
plary only, and additional or alternative blocks can be used in
other embodiments. For example, blocks illustratively shown
as being executed serially in the figures can be performed at
least in part in parallel with one or more other blocks or in
other pipelined configurations in other embodiments.

[0131] The illustrative embodiments provide significantly
improved gesture recognition performance relative to con-
ventional arrangements. For example, these embodiments
provide computationally-efficient static pose recognition
using estimated hand features that are substantially invariant
to hand orientation within an image and in some cases also
substantially invariant to scale and movement of the hand
within an image. This avoids the need for complex hand
image normalizations that would otherwise be required to
deal with variations in hand orientation, scale and movement.
Accordingly, the GR system performance is accelerated
while ensuring high precision in the recognition process. The
disclosed techniques can be applied to a wide range of differ-
ent GR systems, using depth, grayscale, color infrared and
other types of imagers which support a variable frame rate, as
well as imagers which do not support a variable frame rate.
[0132] Different portions of the GR system 110 can be
implemented in software, hardware, firmware or various
combinations thereof. For example, software utilizing hard-
ware accelerators may be used for some processing blocks
while other blocks are implemented using combinations of
hardware and firmware.

[0133] At least portions of the GR-based output 112 of GR
system 110 may be further processed in the image processor
102, or supplied to another processing device 106 or image
destination, as mentioned previously.

[0134] Ttshould again be emphasized that the embodiments
of the invention as described herein are intended to be illus-
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trative only. Forexample, other embodiments of the invention
can be implemented utilizing a wide variety of different types
and arrangements of image processing circuitry, modules,
processing blocks and associated operations than those uti-
lized in the particular embodiments described herein. In addi-
tion, the particular assumptions made herein in the context of
describing certain embodiments need not apply in other
embodiments. These and numerous other alternative embodi-
ments within the scope of the following claims will be readily
apparent to those skilled in the art.

What is claimed is:

1. A method comprising steps of:

identifying a hand region of interest in at least one image;

performing a skeletonization operation on the hand region

of interest;
determining a main direction of the hand region of interest
utilizing a result of the skeletonization operation;

performing a scanning operation on the hand region of
interest utilizing the determined main direction to esti-
mate a plurality of hand features that are substantially
invariant to hand orientation; and

recognizing a static pose of the hand region of interest

based on the estimated hand features;

wherein the steps are implemented in an image processor

comprising a processor coupled to a memory.

2. The method of claim 1 wherein the steps are imple-
mented in a static pose recognition module of a gesture rec-
ognition system of the image processor.

3. The method of claim 2 wherein the static pose recogni-
tion module operates at a lower frame rate than at least one
other recognition module of the gesture recognition system.

4. The method of claim 1 wherein identifying a hand region
of interest comprises generating a hand image comprising a
binary region of interest mask in which pixels within the hand
region of interest all have a first binary value and pixels
outside the hand region of interest all have a second binary
value complementary to the first binary value.

5. The method of claim 1 wherein the result of the skel-
etonization operation comprises a hand skeleton comprising a
set of skeleton points.

6. The method of claim 5 wherein performing a skeleton-
ization operation on the hand region of interest comprises, for
each of a plurality of rows of the hand region of interest,
selecting a middle point between outermost left and right
pixels of the hand region of interest as a skeleton point for that
row.

7. The method of claim 5 wherein performing a skeleton-
ization operation on the hand region of interest comprises:

applying a closing morphological operation to a hand

image containing the hand region of interest to generate
a closed hand image;

computing a distance transform for the closed hand image;

and

selecting the skeleton points based on the distance trans-

form.

8. The method of claim 1 wherein determining a main
direction of the hand region of interest comprises:

determining a prediction line based on a set of skeleton

points;

obtaining the main direction from the prediction line;

identifying skeleton points located more than a threshold

distance from the prediction line;
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eliminating the identified skeleton points from the set of the
skeleton points to generate an updated set of skeleton
points; and

repeating the determining, obtaining, identifying and

eliminating for one or more additional iterations until a
designated minimum number of identified skeleton
points is reached or a designated maximum number of
iterations is reached.

9. The method of claim 1 further comprising:

identifying a palm boundary of the hand region of interest;

and

modifying the hand region of interest to exclude from the

hand region of interest any pixels below the identified
palm boundary.

10. The method of claim 1 wherein performing a scanning
operation utilizing the determined main direction comprises:

determining a plurality of lines perpendicular to a line of

the main direction; and

scanning the hand region of interest along the perpendicu-

lar lines.

11. The method of claim 1 wherein the hand features
include one or more of the following hand features or func-
tions thereof:

an area of the hand region of interest;

a perimeter of the hand region of interest;

a width of the hand region of interest; and

a height of the hand region of interest.

12. The method of claim 1 wherein the hand features
include second-order centered moments or functions thereof
for coordinates of pixels of the hand region of interest.

13. The method of claim 1 wherein the hand features
include one or more of the following hand features or func-
tions thereof:

a top finger area;

a side finger area; and

degree of non-convexity.

14. The method of claim 1 wherein the hand features
include one or more coefficients of a parabola fit to points
given by widths of the hand region of interest at respective
specified heights of the hand region of interest.

15. A non-transitory computer-readable storage medium
having computer program code embodied therein, wherein
the computer program code when executed in the image
processor causes the image processor to perform the method
of claim 1.

16. An apparatus comprising:

an image processor comprising image processing circuitry

and an associated memory;
wherein the image processor is configured to implement a
gesture recognition system utilizing the image process-
ing circuitry and the memory, the gesture recognition
system comprising a static pose recognition module; and

wherein the static pose recognition module is configured to
identify a hand region of interest in at least one image, to
perform a skeletonization operation on the hand region
of interest, to determine a main direction of the hand
region of interest utilizing a result of the skeletonization
operation, to perform a scanning operation on the hand
region of interest utilizing the determined main direction
to estimate a plurality of hand features that are substan-
tially invariant to hand orientation, and to recognize a
static pose of the hand region of interest based on the
estimated hand features.
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17. The apparatus of claim 16 wherein the static pose
recognition module is configured to determine a main direc-
tion of the hand region of interest by determining a prediction
line based on a set of skeleton points, obtaining the main
direction from the prediction line, identifying skeleton points
located more than a threshold distance from the prediction
line, eliminating the identified skeleton points from the set of
the skeleton points to generate an updated set of skeleton
points, and repeating the determining, obtaining, identifying
and eliminating for one or more additional iterations until a
designated minimum number of identified skeleton points is
reached or a designated maximum number of iterations is
reached.

18. The apparatus of claim 16 wherein the static pose
recognition module 1s configured to perform a scanning
operation utilizing the determined main direction by deter-
mining a plurality of lines perpendicular to a line of the main
direction and scanning the hand region of interest along the
perpendicular lines.

19. An integrated circuit comprising the apparatus of claim
16.

20. An image processing system comprising the apparatus
of claim 16.
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