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(57 ABSTRACT

A method and system for offset lifting is provided. In an
embodiment, a method for encoding data includes receiving
a K-bit source word input. The method also includes encod-
ing the K-bit source word input according to a LDPC code,
a lifting function, and a circulant size offset to generate an
N-bit code word output. The circulant size and lifting
function are determined according to an information length,
a code rate, and a decoder. The method also includes storing

3,2017. the N-bit code word output in input/output memory.
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OFFSET LIFTING METHOD

CROSS-REFERENCE TO RELATED
APPLICATIONS

[0001] This application claims the benefit of U.S. Provi-
sional Application No. 62/454,416, filed on Feb. 3, 2017,
which application is hereby incorporated herein by refer-
ence.

TECHNICAL FIELD

[0002] The present application relates to data storage and
communication technologies, in particular to methods and
systems for encoding and decoding data using parity check
codes.

BACKGROUND

[0003] Parity checking codes are used to facilitate the
recovery of stored data as well as data transmitted through
a communications channel. One type of parity check code is
known as Low-Density-Parity-Check (LDPC), which is
characterized by a sparse Parity Check Matrix (PCM), i.e.,
a PCM having a low percentage of I’s. An LDPC encoder at
a transmitter is used for encoding source words to generate
codewords. An LDPC decoder at a receiver is used for
decoding the received codewords. LDPC codes of various
rates are being widely adopted, or considered for adoption,
in data storage and wireless communications technologies
and standards such as those relating to IEEE 802.11 and 5G.
[0004] Almost all LDPC codes used in practice are quasi-
cyclic (QC) LDPC with QC parity-check matrices, in which
a quasi-cyclic identity matrix can be combined with an array
of shift information (i.e., QC shift PCM) to define an
expanded QC PCM (e.g., a QC LDPC PCM). QC LDPC
encoding and recovery algorithms and the storage of PCM
information can consume hardware resources, and accord-
ingly there is a need for methods, systems, and technologies
that improve the efficiency of and reduce the hardware
resources required for QC LDPC coding systems.

SUMMARY

[0005] In an embodiment, a method for encoding data
includes receiving a K-bit source word input. The method
also includes encoding the K-bit source word input accord-
ing to a LDPC code, a lifting function, and a circulant size
offset to generate an N-bit code word output. The circulant
size and lifting function are determined according to an
information length, a code rate, and a decoder. The method
also includes storing the N-bit code word output in input/
output memory.

[0006] In an embodiment, a method for decoding data
includes receiving an N-bit code word input. The method
also includes decoding the N-bit code word input according
to a LDPC code, a lifting function, and a circulant size offset
to generate an K-bit source word output. The circulant size
and lifting function are determined according to an infor-
mation length, a code rate, and a decoder. The method also
includes storing the K-bit source word output in input/output
memory.

[0007] In an embodiment, a network component includes
a read only memory comprising at least a parity portion of
a mother PCM and a lifting table. The network component
also includes a parity bit generator configured to generate
parity bits from a source word according to a child code. The
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child code is determined from the lifting table and the at
least a parity portion of the mother PCM. The lifting table
includes a combination of circulant size and lifting function
according to an information length, a code rate, and a
decoder.

[0008] In an embodinent, a network component includes
a read only memory comprising at least a parity portion of
a mother PCM and a lifting table. The network component
also includes an input/output memory. The network com-
ponent also includes a check node processor configured to
receive a N-bit code word and determine a K-bit source
word according to a child code and store the k=bit source
word in the input/output memory. The child code is deter-
mined from the lifting table and the at least a parity portion
of the mother PCM. The lifting table includes a combination
of circulant size and lifting function according to an infor-
mation length, a code rate, and a decoder.

[0009] Inanembodiment, a method for lifting a child code
from one or more mother codes for encoding data includes
calculating a plurality of shifts for a child code using a fixed
set of a plurality of lifting functions and a fixed set of
allowed circulant size offsets and/or circulant sizes. The
method also includes determining a combination of circulant
size and lifting function according to a direct simulation, an
information length, a code rate, and a decoder. The method
also includes storing a circulant size offset and/or circulant
size index and a lifting function index corresponding to the
determined combination of circulant offset and/or size and
lifting function in a lifting table. The circulant offset and/or
size index and the lifting function index are used to encode
and decode data.

[0010] In an embodiment, a network component config-
ured for decoding data includes a processor and a computer
readable storage medium storing programming for execu-
tion by the processor. The programming includes instruc-
tions for calculating a plurality of shifts for a child code
using a fixed set of a plurality of lifting functions and a fixed
set of allowed circulant sizes. The programming also
includes instructions for determining a combination of cir-
culant size and lifting function according to a direct simu-
lation, an information length, a code rate, and a decoder. The
programming also includes instructions for storing a circu-
lant size index and a lifting function index corresponding to
the determined combination of circulant size and lifting
function in a lifting table, the circulant size index and the
lifting function index used to encode and decode data.

[0011] Inan embodiment, a non-transitory computer-read-
able medium storing computer instructions for decoding
data, that when executed by one or more processors, cause
the one or more processors to perform a plurality of steps.
The steps include calculating a plurality of shifts for a child
code using a fixed set of a plurality of lifting functions and
a fixed set of allowed circulant sizes. The steps also include
determining a combination of circulant size and lifting
function according to a direct simulation, an information
length, a code rate, and a decoder. The steps also include
storing a circulant size index and a lifting function index
corresponding to the determined combination of circulant
size and lifting function in a lifting table, the circulant size
index and the lifting function index used to encode and
decode data.

[0012] Inany of the preceding aspects, circulant size, Z, is
limited by a set of allowed values such that Z is in a form
n*2"s where n is a positive integer from a fixed set of
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integers and s is a non-negative integer, such that the options
for 7 are first 2 or more smallest numbers that have a form
of n*2’s and are greater or equal to 7., wherein 7, is a
minimal possible circulant size to encode the given number
of information bits.

[0013] In any of the preceding aspects, the parity bit
generator is further configured to receive a K-bit source
word and determine an N-bit code word according to the
mother PCM and the lifting table.

[0014] In any of the preceding aspects, shifts of non-zero
circulants for predefined positions are unchanged.

[0015] In any of the preceding aspects, the lifting table is
shared by at least some the one or more mother codes
obtained by puncturing parity bits to change the rate of the
code.

[0016] In any of the preceding aspects, the lifting func-
tions for defining child shifts from the mother shift are
defined as selecting the given number of bits from the binary
representation of the mother shift at some predefined posi-
tions.

[0017] In any of the preceding aspects, the lifting func-
tions for defining child shifts from the mother shift are
defined by selecting the given number of bits from the binary
representation of the mother shift at some predefined posi-
tions; and selecting the given number of bits from the binary
representation of the mother shift at some other predefined
positions.

[0018] In any of the preceding aspects, the method further
includes repeating the selecting the given number of bits
from the binary representation of the mother shift at some
other predefined positions several times.

[0019] In any of the preceding aspects, each iteration of
the selecting the given number of bits from the binary
representation of the mother shift at some other predefined
positions several times comprises a substep and further
comprising summing results of each such substep.

[0020] In any of the preceding aspects, the method also
includes selecting the given number of bits from the binary
representation of the result of the summing at some other
predefined positions.

[0021] In any of the preceding aspects, the lifting func-
tions for defining child shifts from the mother shift select a
fixed number of adjacent bits from a binary representation of
the mother shift value.

[0022] 1In any of the preceding aspects, the lifting func-
tions for defining child shifts from the mother shift select the
fixed number of most significant bits from the binary rep-
resentation of the mother shift value.

[0023] In any of the preceding aspects, the lifting func-
tions for defining child shifts from the mother shift select the
fixed number of least significant bits from the binary rep-
resentation of the mother shift value.

[0024] 1Inany of the preceding aspects, the lifting function
firstly selects s bits from the mother shift value at the
predefined s bit positions, wherein s corresponds to the
minimal power of 2 greater than equal to circulant size 7
(i.e. s=[ log, (Z)]), and secondly if this value appears to be
greater or equal to Z, selects s—1 bits from the mother shifts
at some other predefined s-1 positions.

[0025] Inany of the preceding aspects, the lifting function
firstly selects s least significant bits from the mother shift
value, and secondly if this value appears to be greater or
equal to Z, it selects s-1 least significant bits from the
mother shifts.
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[0026]
is selected from one of 7., 7, orig
Z oig¥0Z, 401, Wherein 7, is a minimal possible circulant
size to encode the given number of information bits and
dZ,,..; 1s a positive integer.

[0027]
is selected from one of Z,,

In any of the preceding aspects, the circulant size
2.4, 7 . +2, . . .,

In any of the preceding aspects, the circulant size

GP2(Z,,,.+1), GP2(Z,,,,.+1)+
1, GP2(Z,,,g+ 1042, GP2(Z,,,,+1)+dZ,,, ., Wherein 7, is a
minimal possible circulant size to encode the given number
of information bits, and wherein GP2(A) is a minimal power
of 2 greater or equal to A and dZ,,., is a positive integer.

[0028]

In any of the preceding aspects, the circulant size
is selected from one of 7, ., GP2(Z,,,+1), GP2(Z,, +1)*2,
GP2(Z,,.,+1)*4, ... GP2(Z,,,,+1)*2°dZ,, .3, Wherein Z,, .
is a minimal possible circulant size to encode the given
number of information bits, and wherein dZ,,, 5 is a positive

integer.

[0029]
is selected from one of Z
Zorig+dzmax1> GP2(Zon'g

D+1, GP2(Z,,,,+dZ,, . +1)+2, . . . m and GP2(Z,, +dZ-
ma¥1)+dZ,,,,. o}, wherein 7, is a minimal possible cir-
culant size to encode the given number of information bits,
wherein GP2(A) is a minimal power of 2 greater or equal to

A, and wherein dZ .., and dZ . are positive integers.

[0030]
is selected from one of Z

In any of the preceding aspects, the circulant size
origr Lomgtls Lopgt2s o,
+dz, ...+, GP2(Z,, +dZ

orig maxl+

In any of the preceding aspects, the circulant size
origr Lorig¥ls Lopigt2s - -,
2 rigt0Z s GP2AZ,, A7, +1)*2, GP2(Z,,, +d7 ..+
*4,. .., GP2(Zm.g+dme1+1)*2AdZmax3, wherein Z,,,,, is
a minimal possible circulant size to encode the given num-
ber of information bits, wherein GP2(A) is a minimal power
of 2 greater or equal to A, and wherein dZ_,, | and dZ

are positive integers.
[0031]

max3

In any of the preceding aspects, the circulant size
is selected from one of Z .., Z, . *1, Z, 042, . . . .
2rigtdZ,rs GP2(Z,,,+d7,, . +1), GP2(Z,,, +d7 .+
D+, GP2(Z,,, 447, + D)2, ..., GP2(Z,,  +dZ  +1)
+dZ,, .0, GP2(Z,,,, 447, . +1)*2, GP2(Z,,, +dZ,, .. +1)*4,
oo, GP2Z,,,4d2,,,,+1)*2°dZ,,, .5, Wherein Z,,,. is a
minimal possible circulant size to encode the given number
of information bits, wherein GP2(A) is a minimal power of
2 greater or equal to A, and wherein dZ daz and

dZ,,..5 are positive integers.
[0032]

‘maxl> max2>
In any of the preceding aspects, the circulant size
is selepted frorp one of Lorigr Lopig*1; Zorig+2,.and 2 g3,
wherein 7,,,,, is a minimal possible circulant size to encode
the given number of information bits.

[0033] In any of the preceding aspects, the circulant size
is selected from one of Z,,,,, and 7, +1, wherein 7, . is a
minimal possible circulant size to encode the given number
of information bits.

[0034] In any of the preceding aspects, the circulant size
is selected from one of Z,,,., GP2(Z,,,,.+1), GP2(Z,,,,.+1)+
1, GP2Z,,;o+1)42, GPAZ,,,,,+1)+6, wherein Z ., is a mini-
mal possible circulant size to encode the given number of
information bits, and wherein GP2(A) is a minimal power of

2 greater than or equal to A.

[0035] In any of the preceding aspects, the circulant size
is selected from one of Z,,,,, GP2(Z,,,,,+1), GP2(Z,,,,+1)+
1, GP2(Z,,, +1)+2, GP2(Z,,,, +1)+3, wherein Z,,,, is a mini-
mal possible circulant size to encode the given number of
information bits.
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[0036] In any of the preceding aspects, the circulant size
is selected from one of Z,,,,, and GP2(Z,,,,,+1), wherein 7.,
is a minimal possible circulant size to encode the given
number of information bits.

[0037] In any of the preceding aspects, the circulant size

is selected from one of 7., Z, +1, 7, +2, 7Z,,..+3,
GP2(Z,,.+1), GP2(Z,,,, +1)+1, GP2(Z,,, +1)+2, and GP2
(Lo gt )43

[0038] In any of the preceding aspects, the circulant size
is selected from one of 7., 7, +1, Z,,,.+2, 7,43,
GP2(Z,,..+4), GP2Z,  +4)+1, GP2Z, +4)+2, GP2
(Z g *)43.

[0039] In any of the preceding aspects, the circulant size
is selected from one of Z,,,,,, 7,,,,.+1, GP2Z,,,.+1), GP2
(Z, it D1

[0040] In any of the preceding aspects, the circulant size
is selected from one of Z,,,,,, Z,,,,.+1, GP2(Z,,,,+2), GP2
(Zig+2)+1.

[0041] In any of the preceding aspects, the circulant size

orig

orig

is selected from one of Z,,,,,,, Z,,,,.+1, Z,,,,o+2, GP2(Z . +3),
GP2(Z,,..+3)+1, GP2(Z,,,+3)+2, GP2(Z,, +3)+3, GP2
(Zyrig*3)*2.

[0042] 1In any of the preceding aspects, the circulant size
is selected from one of a fixed number of options, and
wherein the number of options is equal to 8, 4 or 2.
[0043] The disclosed methods and systems are applicable
to any QC-LDPC code and provides 1) avoidance of “cata-
strophic” cases in length adaption scheme (e.g., when some
simple modulo/floor or other lifting code with Z=Zorg
produces very poor performance); 2) improved error floor
performance; and 3) a nested QC-LDPC code design which
is optimized for all possible information length K and rates
having the disclosed lifting schemes as a target. Further-
more, these advantages are provided with low additional
hardware cost.

BRIEF DESCRIPTION OF THE DRAWINGS

[0044] For a more complete understanding of the present
invention, and the advantages thereof, reference is now
made to the following descriptions taken in conjunction with
the accompanying drawings, in which:

[0045] FIG. 1 is a diagram of an embodiment of a parity
check matrix;

[0046] FIG. 2 is a diagram of an embodiment of a sub-
matrix B;

[0047] FIG. 3 is a diagram of an embodiment of a quasi-
cyclic (QC) matrix with a quasi row orthogonality (QRO)
property in the extension part;

[0048] FIG. 4 is an example of a QC matrix with QRO
property in the extension part;

[0049] FIG. 5 is a graph showing performance of an
embodiment of a length adaption scheme, Es/No(dB) at
BLER=10"%;

[0050] FIG. 6 is a graph showing performance of an
embodiment of a length adaption scheme, Es/No(dB) at
BLER=107%;

[0051] FIG. 7 is a diagram of an embodiment of an
incremental redundancy hybrid automatic repeat request
(IR-HARQ);

[0052] FIG. 8 is a diagram showing a 3 by 6 parity check
matrix (PCM), H, and its corresponding Tanner graph rep-
resentation;

[0053] FIG. 9 is a diagram showing a 4 by 6 PCM, H, and
its corresponding Tanner graph representation;
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[0054] FIG. 10 is a flowchart of an embodiment of an
offset lifting method for encoding data using a low density
parity code;

[0055] FIG. 11 is a diagram of an embodiment of a base
matrix matrix H, for an encoding procedure for LDPC
matrix with lower-triangular extension;

[0056] FIG. 12 is a diagram of an embodiment of a lower
triangular extension for each parity-check matrix H,;
[0057] FIG. 13 is a diagram showing an embodiment of an
IRA LDPC parity-check matrix structure;

[0058] FIG. 14 depicts a table showing an example of a
QC matrix with IRA structure;

[0059] FIG. 15 is a diagram showing an embodiment of a
matrix with an IRA structure which can be used with the
disclosed encoding procedures;

[0060] FIG. 16 is a block diagram of an embodiment of a
LDPC encoder;

[0061] FIG. 17 is a block diagram of an embodiment of an
LDPC decoder;

[0062] FIG. 18 is a flowchart of an embodiment of a
method for encoding data using LDPC, the disclosed lifting
tables, and the disclosed lifting functions;

[0063] FIG. 19 is a flowchart of an embodiment of a
method for decoding data using LDPC, the disclosed lifting
tables, and the disclosed lifting functions;

[0064] FIG. 20 illustrates a block diagram of an embodi-
ment processing system for performing methods described
herein, which may be installed in a host device;

[0065] FIG. 21 illustrates a block diagram of a transceiver
adapted to transmit and receive signaling over a telecom-
munications network; and

[0066] FIG. 22 illustrates an embodiment network for
communicating data in which the disclosed methods and
systems may be implemented.

DETAILED DESCRIPTION OF ILLUSTRATIVE
EMBODIMENTS

[0067] The making and using of the presently preferred
embodiments are discussed in detail below. It should be
appreciated, however, that the present invention provides
many applicable inventive concepts that can be embodied in
a wide variety of specific contexts. The specific embodi-
ments discussed are merely illustrative of specific ways to
make and use the invention, and do not limit the scope of the
invention.

[0068] Disclosed herein are systems, methods, and
devices for encoding/decoding data using LDPC. Various
embodiments include offset lifting procedures to determine
a circulant offset to encode/decode data. Furthermore, vari-
ous embodiments include non-sequential circulant offsets
and larger circulant offsets than the prior art. Various
embodiments also include multiple lifting functions. Having
large circulant offsets allows the offset to be determined
more quickly and consumes fewer system resources than the
prior art methods (e.g., less amount of offline simulations
during lifting table construction, less memory needed to
store the lifting table in the encoder/decoder, etc.). Further-
more, different lifting functions may be better suited for
encoding different length code words.

[0069] FIG. 1 is a diagram of an embodiment of a parity
check matrix mo. In an embodiment, for at least one base
graph, the parity check matrix includes five sub-matrices
identified as A 102, B 104, C 106, D 108, and E 110.
Sub-matrix A 102 may contain systematic and parity bits.
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[0070] FIG. 2 is a diagram of an embodiment of a sub-
matrix B 200. Sub-matrix B 200 is not necessarily square.
Sub-matrix B 200 includes elements 202 of I's and empty
elements 204. One of the columns 206 of sub-matrix B 200
has a weight of three. The columns 208, 210, 212, 214 of
sub-matrix B 200 after the weight-three column 206 have a
dual diagonal structure.

[0071] Returning to FIG. 1, sub-matrix C 106 is a zero
matrix. Sub-matrix E 110 is an identity matrix. In other
aspects, other structures can be considered for other base
graphs, if any.

[0072] Disclosed herein are a nested family of irregular
QC LDPC codes obtained from one high rate base matrix
that follows the working assumption described above with
respect to FIGS. 1 and 2, and a quasi row orthogonal
structure to make a trade off between performance and
complexity.

[0073] Description for LDPC Rate Matching

[0074] Single parity check (SPC) extension is a common
method for LDPC to realize rate matching which is called
Raptor-like structure or Nested Base graph structure. This
method has been adopted by several companies. It usually
starts from a high rate LDPC matrix with dual-diagonal or
lower triangular structure. To achieve lower rate, the high
rate matrix is extended with one single parity check equation
and one parity bit at a time.

[0075] LDPC Design

[0076] In an embodiment, a Quasi-Cyclic (QC) LDPC
codes with QC parity-check matrices is used, where each
circulant is either a circulant permutation matrix (CPM) or
the zero matrix. Usually a quasi-cyclic m,Zxn,7 parity-
check matrix (PCM) H with m, circulant row blocks, n,
circulant column blocks, and the circulant size Z is repre-
sented in the following form:

el o1z Pl

P2 P2
H=

el’mbl el’mb2 et

where the integers p,, are in the range [-1, Z-1]. Here we
denote by €77 the ZxZ CPM corresponding to the right cyclic
shift by p,; positions if O<p,<Z and the ZxZ zero matrix if
p,~1. We call the integers p;; exponents and the correspond-
ing myxn, integer matrix E(H}=(p,),,,, the exponent
matrix of H. In what follows we usually define QC LDPC
codes and their PCMs by the corresponding exponent matri-
ces.

[0077] Nested QC LDPC Code

[0078] FIG. 3 is a diagram of an embodiment of a QC
matrix 300 with QRO property in the extension part. Dis-
closed herein is a nested family of irregular QC LDPC codes
obtained from one high-rate base code as an extension by
several single parity-check codes (SPCs). The QC matrix
300 includes a base matrix 302, dual-diagonal structure 304,
an identity matrix 306 and an extension pall 308 that
includes layers 1, 2, . . . p. QC matric 300 also includes two
punctured circulant blocks 310, information bits 312, and
parity bits 314 as shown in FIG. 3. The general structure of
the corresponding exponent matrices is shown in Error!
Reference source not found., where the base matrix 302 is
the shaded upper left part of QC matrix 300 and corresponds
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to the base code. The extension part 308 is the lower portion
of QC matrix 300. In an aspect, it is disclosed to use base
matrices with dual-diagonal structure in their parity part. It
is also easy to see that the full matrix 300 with the extension
part 308 also supports a low-complexity encoding. In an
aspect, the number of information columns is set to 16 in
order to achieve the peak throughput of 20 Giga bits per
second (Gbps) with more parallelism.

[0079] In order to obtain codes with different number of
information bits K and parity bits N, a length and rate
adaption scheme is used, of which a more detailed descrip-
tion is provided below. This is achieved by using puncturing
both information and parity bits, and also shortening by zero
padding in the information parts of the codeword. In various
aspects, in all the codes for all rates, symbols are punctured
that correspond to the first two circulant column blocks as it
is shown in FIG. 3. The first of these two punctured circulant
columns 310 has the highest column weight among all the
circulant columns 310 and is called the High-Weight (HW)
columnn. The structure of base matrix 302 is similar to the
structure utilized in the PCMs for QC LDPC codes
described in the IEEE 802.11ad™-2012 standard.

[0080] Inorder to obtain a high level of parallelism during
the decoding, the structure of the extension part 308 is
further restricted. A group of rows in the extension part 308
has the feature of quasi row orthogonality (QRO) if for each
pair of different rows in this group they are allowed to have
more than one common positive entries (not equal to -1)
only in the HW circulant column (see FIG. 3). It is worth
noting that a block-parallel decoder could encounter fewer
conflicts if multiple cores (blocks) are processed simultane-
ously, thanks to the QRO structure. To go a step further, one
can also design the rows at the border of two neighboring
groups such that they are not overlapped except for HW
columns such that the implementation is more flexible,
which is defined as a Non-Conflict (NC) property.

[0081] Inan aspect, exponent matrices with several groups
of quasi orthogonal rows in the extension part 308 are used
and such matrix is said to have the quasi row orthogonal
structure.

[0082] FIG. 4is an example of'a QC matrix 400 with QRO
property in the extension part. ZC matrix 400 is a simple
example of an exponent matrix with QRO structure (all
empty cells contain -1). QC matrix 400 includes a base
matrix 402, an extension part 410, two punctured circulant
blocks 404, information bits 406, and parity bits 408. QC
matrix 400 is similar to QC matrix 300. In the depicted
example, there are 7 layers in the extension part 410 of the
matrix 400.

[0083] The disclosed methods, systems, and schemes can
be efficiently implemented in hardware by fully utilizing the
QRO structure of the non-punctured parts of the PCM rows.
As aresult, a flexible trade-off between high throughput and
good performance can be obtained. Low complexity of the
routing network is also achievable by using multiple block
processors. In an embodiment, this is done with several
blocks of each non-overlapping group/layer of rows in
parallel.

[0084] Quasi row orthogonal structured LDPC code pro-
vides a flexible trade-off between high throughput and good
performance for large block size.

[0085] Inan embodiment, Quasi row orthogonal structure
and compact base matrix are used for LDPC codes in NR.
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[0086] Lifting Method, Length and Rate Adaptation

[0087] Shortening, puncturing and lifting method are used
for QC LDPC code to implement length and rate adaptation.
Inan example, suppose one has an exponent matrix (p;;),,, .,
with the circulant size Z,, , . Below, an exemplary method
for obtaining the (N, K)-code with codeword size N and
information block size K, where 100<K<8192 is decribed.

[0088] In an aspect, the lifting method described below is
used to obtain the lifted version of the exponent matrix
(0" myen, With the circulant size Z, Z<512. Such method
improves the performance with fine granularity.

[0089] Assume Z,,,~[K/k,], where k,=n,-m,. We set
7=7,,,,4AZ and P, =p,; mod 2°, where AZE{0, 1, 2, 3,
27 i 2L i1, 2'-2 42, 27, 43}, s is the maxi-

mal possible integer such that 2°<7 and t is the minimal
possible integer such that 7, +4=<2".

[0090] In an aspect, the additional parameter AZ used here
is selected based on the performance of the corresponding
matrices in the simulations (SNR needed to obtain
BLER=10"2 and BLER=10"*) and can be calculated offline
foreach 7. Thus, in an aspect, it is only necessary to store
no more than 3-Z,, _bits for these parameters (three bits for
eachZ,,..). For example, for the nested family the following
table can be used for AZ:

TABLE 1

Example of offset value and parameters.

AZ index Automatically calculated parameters

Zorig (3 bit value) AZ Z =2+ A s K

2 5 7 9 3 32

3 6 7 10 3 3348

4 4 4 8 3 49-64

5 3 3 8 3 65-80

6 2 2 8 3 81-96

7 3 3 10 3 97-112

R 3 3 1 3 113-128
512 0 0 512 9  8177-8192

[0091] Puncturing and Shortening

[0092] Once the lifted exponent matrix (p';;) s, and the
circulant size Z are obtained by the method described above,
define the code with codeword size (n,-2)-Z and informa-
tion block size k, 7 obtained by puncturing the bits corre-
sponding to the first two circulant columns (see FIG. 3). The
parameters are defined as follows: AK=k,Z-K and AN=
(n,-2)-Z-N-AK.

[0093] If AN>0, then further puncture AN redundant bits
starting from the end of the codeword. After applying the
puncturing described above, the punctured codeword is
obtained. If AK>0, then further shortening is performed by
zero padding for the last AK bits in the punctured codeword.

[0094] Performance with Fine Granularity

[0095] FIGS. 5 and 6 show the simulation results for the
length adaption scheme applied to the nested family of QC
LDPC codes.

[0096] FIG. 5 is a graph 500 showing performance of an
embodiment of a length adaption scheme, Es/No(dB) at
BLER=10"2. The various curves 502, 504, 506, 508, 510,
512,514, 516 correspond to rates of 1/5, 1/3, 2/5, 1, 2/3, 3/4,
5/6, and 8/9 respectively. Each curve 502, 504, 506, 508,
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510, 512, 514, 516 is a plot of Es/No(dB) as a function of
information length K in bits at BLER 107, A BP decoder is
used in the evaluation.

[0097] FIG. 6 is a graph 600 showing of an embodiment
of a length adaption scheme, Es/No(dB) at BLER=10"*. The
various curves 602, 604, 606, 608, 610, 612, 614, 616
correspond to rates of 1/5, 1/3, 2/5, 2, 2/3, 3/4, 5/6, and 8/9
respectively. Each curve 602, 604, 606, 608, 610, 612, 614,
616 is a plot of Es/No(dB) as a function of information
length K in bits at BLER 107, BP decoder is used in the
evaluation.

[0098] As can be seen from the FIGS. 5 and 6, the
disclosed lifting method allows a very smooth transition
from one circulant size to another with no visible cata-
strophic cases for all rates and all information block sizes.
[0099] The length adaptation scheme described above
supports fine granularity and avoids catastrophic cases for
different lengths and rates. It also allows a simple hardware
implementation.

[0100] In an aspect, the lifting method described above is
used for LDPC codes in NR.

[0101] IR-HARQ and Retransmission

[0102] FIG. 7 is a diagram of an embodiment of an
incremental redundancy hybrid automatic repeat request
(IR-HARQ) 700. IR-HARQ 700 includes punctured bits
702, information bits 704, and redundant bits 706.

[0103] Since the structure of proposed matrix is a combi-
nation of 802.11n like matrix and single extension part, the
transmitter can firstly encode the codeword for the lowest
code rate and store it in a circular buffer. According to the
desired code rate, a codeword with a certain length is sent
excluding filling bits and the first 27 information bits. In an
aspect, to maintain good performance of LDPC, each
retransmission (e.g., 2%, 3’9, and 4” transmissions in FIG.
7) should start at or near where the last transmission ends,
as shown in FIG. 7. Thus, for example, the 2n transmission
starts where the 1% transmission ends. In this manner,
IR-HARQ and rate-matching can be easily achieved.
[0104] The disclosed LDPC code with raptor-like struc-
ture can support multiple code rates and IR-HARQ using
circular buffer.

[0105] This disclosure describes a design of QC LDPC
code for eMBB. It is shown that this design of LDPC code
has good performance and supports the fine-granularity
rate-matching scheme for all scenarios of eMBB channel.
Quasi row orthogonal structured LDPC code provides a
flexible trade-off between high throughput and good perfor-
mance for large block size. The length adaptation scheme
described above supports fine granularity and avoids cata-
strophic cases for different lengths and rates. It also allows
a simple hardware implementation.

[0106] FIG. 8 is a diagram 800 showing a 3 by 6 parity
check matrix (PCM), H, 802 and its corresponding Tanner
graph representation 804. An LDPC code is defined by a
sparse parity check matrix (PCM), which is an (N-K) row
by N column matrix, where N is the codeword size (number
of bits in a codeword) and K is the information block size of
a source word (number of message bits in each codeword).
A Tanner graph 804 is a graphical representation of the
parity check matrix specifving the parity check equations. In
the depicted example, the Tanner graph 804 includes three
check nodes (CNs) ¢, ¢,, and ¢, and six variable nodes
(VNs) v,, V,, V3, V,, Vs, and vg. A Tanner graph consists of
N variable nodes (VNs) and M check nodes (CNs). In the
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depicted example, the Tanner graph 804 includes three CNs
C,. C,, and ¢, and six VNs v, v,, v,, v,, V5, and v,. In the
Tanner graph 804 shown in FIG. 8, the m” check node is
connected to the n” variable node if, and only if, the n*
element, b . in the m™ row in the parity check matrix, H,
is 1.

[0107] FIG. 9 is a diagram 900 showing a 4 by 6 PCM, H,
902 and its corresponding Tanner graph representation 904.
A receiving entity can decode received code words that have
been encoded in accordance with PCM H by applying the
PCM H in combination with a message passing algorithm
(MPA). As illustrated in the example of FIG. 9, LDPC
decoding with MPA is an iterative decoding algorithm that
uses the structure of the Tanner graph 904. In an LDPC
decoder, each m™ check node (C,, C,, C,) is connected to
the n” variable node (V,, . . ., V) if and only if the n*
element h, in the m” row in the PCM H is 1.

[0108] For practical application, PCMs are typically con-
figured as a more structured matrix rather than a simple
collection of binary ones and zeros. For example, a more
structured matrix is used to support a type of LDPC codes
referred to as Quasi-Cyclic (QC) LDPC that are produced by
cyclic permutation matrices with column weight 1. In par-
ticular, as shown in FIG. 9, LDPC PCM H can be partitioned
into a set of square sub-matrices P, of size Zx7. that are either
cyclic-permutations of an identity matrix P, or null subma-
trices with all zero entries. The matrix dimension 7 of the
QC sub-matrix is referred to as the circulant size and is also
known as a lifting factor. The identity matrix P, has “1”
entries on the diagonal from the top left corner to the bottom
right corner and “0” entries everywhere else. An index value
1 can be used to denote the cyclic-permutation submatrix P,
obtained from the ZxZ identity matrix P, by cyclically
shifting the columns to the right by i elements. By way of
example, FIG. 9 illustrates 4 by 6 LDPC PCM H partitioned
into a set of 2 by 2 square submatrices. The submatrix P, is
an identity matrix, and submatrix P, is obtained by cyclically
shifting the columns of submatrix P, to the right by 1. QC
LDPC allows large PCMs to be represented as smaller
structured PCMs with each Zx7 submatrix represented by
its index value i in a corresponding cell location of a QC
PCM. By way of example, in FIG. 9, the 4 by 6 PCM H can
be restated as (and thus generated from) a 2 by 3 QC PCM
H, in which each cell includes with an cyclic shift index
value or a null value. As used herein, H may be referred to
as a protograph of the code (i.e., protograph matrix). Con-
verting from H to H, is typically referred to as “edge
labeling” or simply “labeling.” Also, as used herein, H_ may
be referred to as a labelled protograph or a labelled matrix.

[0109] QC LDPC codes are usually decoded by a message
passing decoder such as BP, Min-Sum, and their modifica-
tions (NMSA, OMSA, . . . ). Performance of the QC LDPC
code depends on multiple factors like row and column
weight distribution (typically optimized using Density evo-
lution methods), code distance, amount of short cycles and
trapping sets etc. However, prior art encoding/decoding
systems and algorithms and storage of the PCM information
consume large amounts of system resources.

[0110] Additionally, to support information length fine
granularity and rate adaption, nested family of the codes
may be used, where rate and length adaption is performed by
puncturing (removing) parity bits and shortening (zero-
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padding) information bits. Accordingly, simple and power-
ful lifting method are needed to construct child PCMs from
a single parent PCM.

[0111] As noted above, storage and use of QC PCM
information can be resource intensive. Accordingly, embodi-
ments of the present disclosure provide a QC PCM method
and system that allows the same QC PCM information to be
adaptively used to support a range of different information
rates and information block sizes K. Accordingly, methods
and systems are disclosed herein that relate to shortening,
puncturing and lifting QC LDPC codes. Shortening means
padding information bits with zeros to match exactly the
given rate (these bits are not transmitted but used by both
encoder and decoder as zeros). Shortened bits may be
padded from the left, the right side of the information block,
or even from somewhere in the middle. Puncturing means
removing some non-needed parity check bits to increase the
rate of the code. This corresponds to cutting the last several
columns and the same number of rows from the PCM.
[0112] To support information length fine granularity and
rate adaption, nested family of the codes may be used, where
rate and length adaption is performed by puncturing parity
bits and shortening information bits. Accordingly, simple
and powerful lifting methods are described herein to con-
struct child PCMs from one or several parent PCMs.
[0113] Example embodiments are directed to an advanced
lifting method that provides one or more of the following
features: (i) high performance for every information block
size K with 1 bit granularity; (ii) low hardware complexity;
and (iii) need to store only one PCM or a limited set of
PCMs in memory. In some examples, a simple modulo
based formula is used for obtaining child matrix shifts from
a parent shift. As a result, a parent PCM can be sued with a
relatively small data table (also referred to herein as a
“lifting table”) to support multiple different circulant sizes 7.
The table can be constructed in offline by direct simulation,
and may be tuned for specific decoder, range of rates, lengths
and number of iterations. In example embodiments, modulos
may be selected from a limited set of hardware-friendly
values like 2° or n*2° where s and n are natural numbers.
[0114] Accordingly, in example embodiments, a data set in
the form of a table is generated that specifies variables that
can be used to modify a parent PCM to optimally support
different data rates and information block sizes. In particular,
for each rate and information block size K, a circulant size
7 and a modulo M=n*2’ selected (using performance simu-
lations in offline) from the following options:

[0115] Options for circulant size Z

Z=Z e Tt L o« Dyt AT

min ~min

[0116] Where:
[0117] AZ,, is a positive integer, for example:
AZ,.=lorAZ, =27 = K/Kbl;
[0118] K=number of information bits (information
block size) and
[0119] Kb—+# of information columns
[0120] Options for n: nE{n,, n,, ... n,}
[0121] Simplest case: n is always 1. Other examples:
nE{3.4,5,7}
[0122] For each option we set s=| log, (Z/n)|
[0123] Options for modulo M:

M= M=n*2°"!, || M=pipshsma

where As,, .. 1s 0 or a positive integer, for example: As,,, =1
or As,,,.=0orAs, =2
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[0124] Lifting formula: circulant size: Z, shift=shift,,,.,,
mod M

[0125] Based on simulations, values n, AZ and As are
selected so that:

72,5002, 5 logo(Z)]

M=n2shs

[0126] In example embodiments, simulations are done for
the specific types of decoder (e.g. BP, MinSum, LOMS etc.)
and a specific number of iterations (e.g. 15) with specific
parameters, and the results are then used to build a lifting
table, a representation of which can be as follows: Table 1:
Lifting Table

TABLE 1

Lifting Table
Zoiin AZ As n
2 0 1 1

[0127] The size of the lifting table can be determined as
follows:

Size of Table 1: [ logs(1+AZ,,,..)1*[ logo(1+AS,,...)

*nz*nN
[0128] Where:
[0129] nZ is a number of options for different Z

[0130] oN is a size of a set {n;, n,. ..

forn
(For example, if AZ, =1, As__ ==1, AN=1, nZ=100, and
nN=1, table size is 2*2*100=400 bits)
[0131] Parent PCM design of a rate adaptive code can be
done using PEG-based (progressive edge growth) methods
where the following steps are involved:

[0132] Finding the column and row weight distribution
(for example using DE—density evolution)

[0133] Finding a protograph using PEG procedure. In
an embodiment, the protograph is a substantially best
or preferred protograph.

[0134] Labeling (finding the lifting values for each
non-zero circulant)

[0135] With respect to Labeling, several options for lifts
are explored to find the best or a preferred one. If it is known
in advance that all shifts are from [0 . . . n*2°-1], much fewer
number of options need to be explored which makes PCM
design more efficient.

[0136] A further explanation of shortening, puncturing and
lifting methods used for QC LDPC code to implement
length and rate adaptation will now be provided in the
context of an exponent matrix (p,),,.,, With the circulant
size Z,,,.. The following explains how to obtain the (N,
K)-code with codeword sizeN and information block sizeK,
where for example 100=K<8192.

[0137] First, the lifting method described below is used to
obtain the lifted version of the exponent matrix (p';),, ...
with the circulant size 7, for example Z<512.Let Z,,,, be the
minimal possible circulant size for the given information
block size K, i.e. Z,,,,=[K/k, ], where k,=n,-m,. Values are
set as follows: Set Z=7,,, +AZ and p',=p,, mod 2°, where
AZE(0, 1, 2, 3) ands is the maximal possible integer such
that 2°<7.

. 1,} of options
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[0138] The additional parameter AZ is selected based on
the performance of the corresponding matrices in simula-
tions (SNR needed to obtain BLER=10"?) and can be done
in offline for each Z,,,. Thus, the storage required for the
adaption parameters is no more than 27, bits for these

parameters (two bits for each Z, ). Another example table
of offset values and parameters for AZ is as follows:

TABLE 2

Example of offset value and parameters

AZ Automatically calculated parameters
Ziin (2 bit) Z =7 + AZ s K
7 1 8 3 97-112
8 1 9 3 113-128
9 1 10 3 129-144
10 1 11 3 145-160
11 1 12 3 161-176
12 1 13 3 177-192
13 3 16 4 193-208
512 0 512 8 8177-8192

[0139] Once the lifted exponent matrix (p';),,.,, and the
circulant size Z are obtained by the method described above,
the code with codeword size (n,~2)7 and information block
size k,7 can be obtained by puncturing the bits correspond-
ing to the first two circulant columns. Parameters AK and
AN can be defined as AK=k,7-K and AN=(n,-2)Z-N-AK.
If AN>0, AN redundant bits can further punctured starting
from the end of the codeword. Once the puncturing
described above has been applied and the punctured code-
word obtained, if AK>0 further shortening can be done by
zero padding for the first AK bits in the punctured codeword.

[0140] In accordance with an embodiment, a generalized
lifting method is disclosed that provides an advanced ver-
sion of offset-based lifting. One or more disclosed embodi-
ments may provide for high performance for every infor-
mation of length K with up to 1 bit granularity. Additionally,
one or more embodiments provide for low hardware com-
plexity where only 1 PCM is stored in memory. A simple
hardware friendly based formula for obtaining a child matrix
shifts from a mother matrix shifts is disclosed. In an embodi-
ment, only one additional small table is needed for each size
of Z. The table may be constructed offline by direct simu-
lation. Furthermore, the table may be tuned for a specific
decoder, range of rates, lengths, and number of iterations.

[0141] FIG. 10 is a flowchart of an embodiment of an
offset lifting method 1000 for encoding data using a low
density parity code. For each rate and information length K,
different options for circulant size, Z, are investigated. Thus,
the method 1000 begins at block 1002 where a minimal
circulant possible circulant size for each rate and informa-
tion length, K, are calculated using a fixed subset of options
S for circulant size. In an embodiment, the minimal possible
circulant size is calculated as Z,,,,=[K/Kb] where K is a
number of information bits and Kb is a number of informa-
tion columns. S represents a fixed subset of options for

circulant size ZzZ, ;..
[0142] Inanembodiment, S may be a predefined subset of
the set S.li{Zoﬁg.,.Zo,igH, oo 2447, }), where
daz is a positive integer. For example, dZ, =1 or
dz

maxl? ‘maxl

=2 ordZ, ,.,=3.

max1
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[0143] In another embodiment, S may be a predefined

subset of the set S,={2! 8wl ol foexZailyy - 2l
log@rdled7, Y where dZ,,, , is a positive integer. For
example: dZ, =1 or dZ,, =2 or dZWM2

[0144] In some embodiments, set S, is preferable to set S,
because 7, may be very close but greater than some power
of 2, but smaller and very far away from another power of
2. For example, Z,,,,~129 is close to 128 and far from 256,
Using set S, one would need to have quite a large value of
dZ,,..; and a lot of simulations in order to explore Z=256.
However, using set S,, one can immediately “jump” to 256
and can use M=256 as a modulo.

[0145] In another embodiment, S may be a predeﬁned

subset of the set 8,={2l "5~ ””g)] ol logdZarg+1] ol
tog? GorH dZnasll Where dZ,,..5 1s a posmve mteger. For
example: dZ,, .=l ordZ,  .=2ordZ  .=3

[0146] Inanocther embodiment, a fixed subset of a union of
the above sets S,=S,U,US; may be considered. For
example, e.g., Z may only have a form of n*2° where n is
some positive integer and s is some non-negative integer.
For example, in an embodiment, if n&{3,5,7}, only the
following values for Z are allowed for Z<25: {1,2,3,4,5,6,
8,10,12,14,16,20,24}. The allowed 7 values are limited to
those shown previously in this example since other numbers
cannot be represented in a form {3, 5, 7}*2". For example,
25 is a number that cannot be represented as some number
times 2*. In this case, an embodiment lifting scheme may
select from the predetermined subset S,={ZE&S,US,US;:
7s7.,,.:& 7=n*2’° for some n and s}. In an embodiment, for
practical efficient implementation, first m (e.g., m=2, 4, 8)
smallest allowed circulant sizes 7 from the set (Z=n*2*) may
be considered. This implies at least two things. First, instead
of looking at offsets such as 1, 2, 3, etc. which may provide
“non-allowed” values for 7, the method iterates only
through allowed values of Z which may save computational
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resources at the offset lifting table construction step. Second,
in an embodiment, an index of allowed Zs is stored in the
offset table rather than the absolute values of delta Z, thereby
saving memory since fewer bits are required for storing
indexes as opposed to absolute shifts.

[0147] For each rate and information length, K, and for
each option of Z E S, a preset of functions f,, f,, . . ., f,
is investigated as follows. Thus, at block 1004, for each of
the plurality of functions, f,, a non-negative integer shift
value is calculated for the child code according to the
formula: h,,/=f.(h,.. /... Z), where h_,,  is a non-nega-
tive-one shift value of the mother code (for example, cor-
responding to the maximal information length K, ), and
b,/ is a resulting shift value of the child code. After that,
at block 1006, a circulant size, Z, and a function index, i,,
are selected and fixed for the given rate and K using direct
simulation for the given type/class of decoders, target bit or
block error rate ER,, decoding parameters, etc. In embodi-
ment, the circulant size, 7, and the function index, i,, are
selected according to the following formula:

Cesnlpos) ATz, 1 i (SNR@ER, for the
given Z and f))

[0148] At block 1008, the resulting pair (i, i,) is stored in
an offset table, T, where 1, is an index of Z,_,, in a set of
possible options S for Z.

[0149] 1t should be noted that the simulation data is
specific to the selected LDPC code. If a different LDPC code
is utilized, then different simulation data is generated and
used.

[0150] One should also note that some non-zero circulants
of the mother code may be fixed so that the above described
lifting scheme is not applied to them and their shift values
are left unchanged. Table 3 below shows an example of such
fixed positions.
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[0151] Thus, in an embodiment, offset table, T, contains
the following entries shown in Table 4.

TABLE 4
Z i = [K/Kb] i,=1,2,...,IS| b=1,2...,n
Zyin 1 3
Lo 2 4

[0152] Here, ISI denotes the size of set S.

[0153] Table 4 is an alternate embodiment of a lifting table
as compared to table 2. Table 4 includes a column corre-
sponding to Z ., a column representing with the index of
7,05, 10 @ set of possible options S for Z, and a column
providing the lifting function index. Table 4 is in contrast to
table 2 in which the actual offsets are stored in the lifting
table rather than indices. Furthermore, table 2 only uses a
single lifting function. Therefore, there is no need for a
lifting function index in table 2.

[0154] Another embodiment of a lifting table is provided
in table 5 below.

TABLE 5

Example of offset value and parameters.

AZ index Automatically calculated parametets

2 prig (3bitvalue) AZ Z=2Z,,+AZ s K

2 5 7 9 3 32

3 6 7 10 3 33-48

4 4 4 8 3 49-64

5 3 3 8 3 65-80

6 2 2 8 3 81-96

7 3 3 10 3 97-112

8 3 3 1 3 113-128
512 0 0 512 9  8177-8192

[0155] Thelifting tables may store an index corresponding
10 an absolute value for AZ (i.e., the circulant size offset) or
may store the actual values for AZ. In some embodiments,
it may be beneficial to store the index rather than the actual
AZ to save memory.
[0156] It should be noted that blocks 304, 306, and 308 in
method 300 shown in FIG. 3 may be performed for each
coding rate independently. In such case, each given rate, R,
will have a separate table, T,.
[0157] In another embodiment, table T may be selected as
a result of direct simulations for all rates and, therefore, will
not depend on rate. For example, the following cost func-
tions may be used for this purpose:
[0158] (Zj,pis ,):ArgMin(zeS, 2=1 . .
w(sumg{SNRE@{R.ER,} for the given Z and f,})
[0159] (Zbesﬂi ,_,S,):ArgMin( Es, i2=1 . .

n)(maxR{SNRlboss@{R,ERj for given 7 and f,,})
Here, SNR@{R,ERt} denotes an SNR threshold in order to
reach the target error rate ERt for the given rate R, and
SNRloss means such SNR threshold difference with some
other (reference) solution. In an embodiment, sumy is a
weighted sum since some rates may be more important than
others. In an embodiment, max, may be replaced by a sum
or a weighted sum. The threshold difference may be in a
form max(0, SNR—SNRreference) because in an embodi-
ment negative loss is considered as 0 (i.e., no) loss. Thus, in
an embodiment, only the positive loss is minimized.
[0160] Method 300 describes the most general case of the
offset lifting method. In a practical implementation, func-
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tions f}, £, . . ., f, may be selected to be hardware
implementation friendly. Example embodiments that
describe such functions are the following.

[0161] It should be noted that both the encoder and the
decoder generate a child PCM from the mother PCM by
changing the mother shift table (typically stored in an
interleaved way which is called “decoding schedule”). This
is done using an offset lifting table as shown above and a
lifting formula.

Example A

[0162] Let mother code shift values be limited by a
maximal circulant size 7, h,, 50 <Z.,...- Let k is a number
of bits sufficient to store mother shift values, ie. k=]
logy(Z,,..)] Let Z is a circulant size for the child code
defined according to the above explained Step 1 and s is a
number of bits which is sufficient to store shift values for the
child code, i.e. s=[ log,(Z)]. Then functions f,, f,, . . ., £,
may be defined as numbers obtained by selecting all or some
fixed s bits from k bits of the mother shift value. For
example, let Z,, , =32 and 7=16. In this case k=log,(32)=5
and s=log,(16)=4. Then, example A provides the following
n=5 functions (or a subset of this set):

[0163] h,,,4..~bsbsbob;by
[0164] f(h,, ..., 16)7bsb,b, by
[0165] {1,(h,,,..,»16)=b,bsb by

[0166]  f5(h,, 5y, 16)=b,bsboby

[0167]  £i(h,,ppc,,16)7bsboby

[0168] f5 (hmotheri 1 6):b4b3b2bl
One should note that from hardware implementation point of
view, scheme A is very simple as it just needs extraction of
the given set of s bits from a bigger number of k bits stored
in memory or on registers.

BExample B

[0169] Example lifting scheme B is a generalization of
Example lifting scheme A. Let mother code shift values are
again limited by a maximal circulant size 7., b, 110, <7
and k is a number of bits sufficient to store mother shift
values, i.e. k=] log,(Z,,..)]- Let Z be a circulant size for the
child code and s=[ log,(Z)]. Then each function f}, f,, . . .

, f, may be defined using the following sub-steps:

(1) Select some s; <=k bits at fixed positions p(ll), P(zl)a Pg)
(2) Select some s, <=k bits at fixed positions p(lz), p(zz), pg)
(r) Select some s, <=k bits at fixed positions p?, p, ... p@

(r+1) Sum up the integers obtained at steps (1)-(r)
(r +2) Optionally, select some s bits from the sum in (r+1)

[0170] For example, let again 7, , =32 and Z=16. In this

case k=log,(32)=5 and s=log,(16)=4. Then, in this example
for scheme B the following functions may be used as f; and
f,:

hmolher = b4b3b2bl bo
S1(imotners 16) = babsby + bybsba by

Foltmothers 16) = bybs + byb3by
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[0171] Tt is easily observed that f, and f, implement the
following functions: f, (h,16)=|3*h/4 | and £,(h,16)=|3*h/8].
One should note that from hardware implementation point of
view, scheme B is also very simple as it needs several
extractions of the given set of bits from a larger number of
k bits stored in memory or on registers, and then summing
up these numbers.

Example C

[0172] Example lifting scheme C is a narrow variant of
Example lifting scheme A. Let mother code shift values are
limited by h,,,;..<7Z,... and k is a number of bits sufficient
to store mother shift values, i.e. k=] log,(Z, . )]- LetZbe a
circulant size for the child code and s=[ log,(Z)]. Then each
function f}, f,, . . ., £, may be defined as taking s (or less)
adjacent bits from the mother shift, i.e. ifh,,_,,.,.=b, 1 b;»
... b, by, then:

FiPmothers ) = by by g .. by,

Fllmothers Z) = bi—aby—s ... by—s1,
Ji—st2(Mmothers Z) = bs 2bs 5 ... by,

or a subset of this set.

[0173] One should note that each fi(h,, .., £)=b 1 br iy
.« o by_ysu1, actually calculates the following function:
fih 20,0/ mod 27,

-mother’ mothe.

Example D

[0174] Example lifting scheme D is a special case of
Example lifting scheme C.

[0175] Let mother code shift values are limited by
N,omer<lmae @0d k is a number of bits sufficient to store
mother shift values, i.e. k=] log,(Z,,..) |- Let Z be a circulant
size for the child code and s=[ log,(7)]. Then each function
f, £, ..., f, may be defined as taking s or smaller number
of least significant bits from the mother shift, i.e. if
h =b,_1, by . . . by by, then:

mother

J1(momer, Z) = bs-1bs2 -.. bo,

Follnothers Z) = bs2bs 5 ... ba,
Fsllmothers Z) = bo,

or a subset of this set.

[0176] One should note that each fi(h,, .., Z) actually
calculates the modulo of the mother offset over a power of
2: f(h Z)=h mod 2.

mother’ mother

Example E

[0177] Example lifting scheme E is a special case of
Example lifting scheme C. Let mother code shift values are
limited by h,,,;..<7Z,... and k is a number of bits sufficient
1o store mother shift values, i.e. k=] log,(Z,,..)]- Let Zbe a
circulant size for the child code and s=[ log,(Z)]. Then each

function f}, 15, . . . . £, may be defined as taking s or smaller

Aug. 9, 2018

number of most significant bits from the mother shift, i.e. if
h =b;_1, b;5 ... b, by, then:

-mother

S1Unothers 2) = bi_1bya .. by,

Follmothers 2) = bi1by g ... bigurs

ff(hmmhzra Z)= b1,

or a subset of this set.

[0178] One should note that each fi(h,,, ... Z) actually
calculates the floor of the mother offset over a power of 2:
fih 2y by e 270,

-mother:

Example F

[0179] Let again s=] log,(Z)]. The following lifting func-
tion { may be used:

PonginerMO@Z ™, if (opnermod2’) = 2,

Hnothermod2®,  if (Apoypermod2®) < 2

S Bonother, 7) = {

[0180] In the above formula mod is just an example of a
bit operation, any other above listed functions f; may be used
instead.

[0181] Encoding for LDPC Matrix with Lower-Triangular
Extension

[0182] Following is a description of an embodiment of an
encoding procedure for LDPC matrix with lower-triangular
extension shown on FIG. 11 of the base matrix H, 1102. For
other types of matrices a similar approach can be used. First
of all the lifting method is applied and for each circulant the
corresponding shift value is calculated.

[0183] Submatrices (H,, H,;, H,, . .. ) of this parity-check
matrix can be used to construct LDPC codes of different
rates. The base matrix 1102 has the highest rate of all codes
from family. For each parity-check matrix H; of family it
contains a lower triangular extension 1200 as shown in FIG.
12 such that all matrices H;, j<i of rates higher than H as
shown in FIG. 11. Because of lower-triangular structure,
additional parity bits for code C,, | can be easily calculated
from codeword of C,. If we have codeword w,EC; (ie.
H,w,=0), and matrix H, has lower-triangular extension

H; 0
L I

Hy = [

1200 as shown in FIG. 12, then additional bits w' can be
calculated from equation L,w'+Lw=0. Matrix L is sparse
and L, is sparse and lower-triangular. So, first we need to
calculate s=LLw by multiplication w by sparse matrix L, then
we need to solve linear system [, w'=s with lower-triangular

P
sparse matrix [ . Both operations may be done efficiently.

Total complexit§ of calculation of w' is proportional to total
number of non-zero elements of matrix [L L,]. The most
used type of lower-triangular extension is raptor-like exten-
sion for which [=I.

[0184] FIG. 13 is a diagram showing an embodiment of an

IRA LDPC parity-check matrix structure 1300. In an aspect,
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the base matrix H, has the dual-diagonal structure (also
called IRA structure) in section 1306. Efficient encoding for
this matrix is possible working directly on its parity-check
matrix, due to its particular IRA structure shown in FIG. 13.
[0185] In the table 1400 depicted in FIG. 14, one can see
an example of a QC matrix with IRA structure. It is the
exponent matrix of the IEEE802.16-2009 LDPC code with
codeword length n=2304, R=1/2 and the circulant size 96.
[0186] Inan aspect, one can describe an eflicient encoding
method for IRA QC LDPC codes. Suppose that this matrix
is specified by its cxt exponent matrix with circulant size b
such as shown above. Note that in such a matrix the column
of index t-c=k/b of all exponent matrices, i.e., the column
associated with coded bits X.,_,,=Po, - - + s Xecr1)o1 D15
has exactly three non-negative elements, two of which are
identical and one being unpaired. Next, the row index of this
unpaired element is denoted by C. Encoding may then be
efficiently performed as follows.
[0187] Let the vector containing the information symbols
be u=[ug, vy, . . ., u._._,], where for Ogj=t—c-1 vector v,
contains the b information bits associated with the j th
column of the exponent matrix, i.e., W=[Ws, . . ., Ugy136-1]
Similarly, let the vector containing the parity bits be p=[p,,
.« s Po_1], where for O<i=c-1 vector p, contains the b parity
bits associated with the (t-c+i)th column of the exponent
matrix, i.e., p =[P - - - » Pesiypooil-
[0188] The b parity bits forming p, are computed based on
the b parity-check equations corresponding to the row of the
exponent matrix including the unpaired non-negative ele-
ment of its (t-c)th column. In fact, letting P, ; be the square
bxb matrix representing the expansion of element (i,j) in the
exponent matrix, summing over all the parity-check equa-
tions yields

cltel
Pei-cPo =Z Z P;
=0 =0

i

and therefore

- -1 —1 -1
Po=P E,H) 2" ijot P, 1M

Note that multiplication by each P, as well as by (Pe, o)
simply represents a cyclic shift (the inverse of a circulant
permutation matrix is itself a circulant permutation matrix).
Once the elements of vector p, are known, fori=0, . .., c-2
the elements of vector p,,, may be calculated as p,,,=P,,,
PP AZ,—g Py, U, where again all multiplications
may be efliciently implemented as cyclic shifts, and where
in the summation the term p, is not present if 1=0.

[0189] Tt is easy to see that the described above scheme
can be also used for matrices with similar to IRA structure.
For example for the matrix 1500 shown in FIG. 15, one can
also use a similar encoding method.

[0190] FIG. 16 is a block diagram of an embodiment of a
LPDC encoder 1600. LPDC encoder 1600 includes read-
only memory 1602 where a mother PCM 1606 and a lifting
table 1608 are stored. The LPDC encoder 1600 also includes
an encoder component 1604 that includes /O memory 1610
and a parity bit processor/generator 1612. The encoder 1600
receives a K-bit input source word and generates an N-bit
output code word. The I/O memory 1610 stores the input
K-bit information word and is used by the encoder 1604 to
generate the K-bit output. The read-only memory 1602
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stores mother code circulant shift values stored in the mother
PCM 1606 and the lifting table 1608. In an embodiment, the
lifting functions are implemented in hardware and are not
stored in memory. The lifting table 1608 includes indices of
circulant size offsets and/or indices corresponding to the
allowed circulant sizes and indices corresponding to a lifting
function to be used. The parity bit processor/generator 1612
generates an N-bit output code word according to the K-bit
input using appropriate LDPC encoding method, using the
child PCM generated on the fly from the mother PCM 1606
(or a generator matrix corresponding to this child PCM).
This child PCM generation is done by producing offset
values of the child code, for each non-zero circulant of the
mother PCM 1606, by selecting one of the circulant size
offset values and/or allowed circulant size, and using this
circulant offset and one of the lifting functions or a set of
functions corresponding to selected indices in the lifting
table that are appropriate for the given size, K, of the input.
The N-bit output is then stored in the I/O memory 1610.

[0191] FIG. 17 is a block diagram of an embodiment of a
LPDC decoder 1700. The LPDC decoder 1700 includes a
read-only memory 1702 for storing mother PCM 1706 and
the lifting table 1708, and a decoder component 1704 that
includes I/O memory 1710 and a check node processor
1712. The decoder 170000 receives an input LLR (log
likelihood ratio) sequence of length N and generates a K-bit
output. The read-only memory 1702 stores circulant shift
values of the mother PCM 1706 and the lifting table 1708.
The lifting table 1708 includes indices of circulant size
offsets and/or allowed circulant sizes, and indices corre-
sponding to a lifting function. The I/O memory 1710 stores
the input vector of length N of LLR values and is used by
the check node processor 1712 to generate the K-bit output.
The K-bit output is then stored in the I/O memory 1710. The
check node processor 1712 generates a K-bit output infor-
mation bit sequence according to the received N-component
input, using a child PCM generated on the fly from the
mother PCM 1706 by producing, for each non-zero circulant
of the mother PCM 1706, shift values of the child code from
the mother code shift value by selecting one of the circulant
offset values and/or allowed circulant size and applying to it
a lifting function or functions corresponding to selected
indices in the lifting table 1708.

[0192] FIG. 18 is a flowchart of an embodiment of a
method 1800 for encoding data using LDPC, the disclosed
lifting tables, and the disclosed lifting functions. The method
1800 includes receiving a K-bit source word. The K-bit
source word is encoded by an LPDC coder to produce an
N-bit code word using the disclosed lifting table and lifting
functions. The encoder then transmits the N-bit code word.
1t should be noted that LDPC codes having a parity-check
matrix H,,, of a particular structure such as, for example, a
parity-check matrix H,.,,, having a parity part of dual diago-
nal structure allows the encoding of the information
sequence IS, using (only) the parity-check matrix H,_, so
that obtaining the generator matrix Gy, may not be required
(cf. T. J. Richardson and R. L. Urbanke, “Efficient encoding
of low-density parity-check codes”, IEEE TRANSAC-
TIONS ON INFORMATION THEORY, Volume 47, Issue 2,
Pages 638-656, August 2002, the contents of which are
incorporated herein by reference as if reproduced in its
entirety).

[0193] FIG. 19 is a flowchart of an embodiment of a
method 1900 for decoding data using LDPC, the disclosed
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lifting tables, and the disclosed lifting functions. The method
1900 includes receiving a K-bit source word. The N-bit code
word is decoded by an LPDC coder to produce an K-bit
source word using the disclosed lifting table and lifting
functions. The decoder then stores the K-bit source word.
The decoder uses the redundancy in the received informa-
tion sequence in a decoding operation performed by the
decoder to correct etrors in the received information
sequence and produce a decoded information sequence (cf.
M. P. C. Fossorier et al.,, “Reduced Complexity Iterative
Decoding of Low-Density Parity Check Codes Based on
Belief Propagation”, IEEE TRANSACTIONS ON COM-
MUNICATIONS, May 1999, Volume 47, Number 5, Pages
673-680, and J. Chen et al., “Improved min-sum decoding
algorithms for irregular LDPC codes”, PROCEEDINGS OF
THE 2005 IEEE INTERNATIONAL SYMPOSIUM ON
INFORMATION THEORY, Pages 449-453, September
2005). The decoded information sequence is an estimate of
the encoded information sequence from which (an estimate
of) the information sequence can be extracted.

[0194] FIG. 20 illustrates a block diagram of an embodi-
ment processing system 2000 for performing methods
described herein, which may be installed in a host device. As
shown, the processing system 2000 includes a processor
2004, a memory 2006, and interfaces 2010-2014, which may
(or may not) be arranged as shown in FIG. 20. The processor
2004 may be any component or collection of components
adapted to perform computations and/or other processing
related tasks, and the memory 2006 may be any component
or collection of components adapted to store programming
and/or instructions for execution by the processor 2004. In
an embodiment, the memory 2006 includes a non-transitory
computer readable medium. The interfaces 2010, 2012,
2014 may be any component or collection of components
that allow the processing system 2000 to communicate with
other devices/components and/or a user. For example, one or
more of the interfaces 2010, 2012, 2014 may be adapted to
communicate data, control, or management messages from
the processor 2004 to applications installed on the host
device and/or a remote device. As another example, one or
more of the interfaces 2010, 2012, 2014 may be adapted to
allow a user or user device (e.g., personal computer (PC),
etc.) to interact/communicate with the processing system
2000. The processing system 2000 may include additional
components not depicted in FIG. 20, such as long term
storage (e.g., non-volatile memory, etc.).

[0195] In some embodiments, the processing system 2000
is included in a network device that is accessing, or part
otherwise of, a telecommunications network. In one
example, the processing system 2000 is in a network-side
device in a wireless or wireline telecommunications net-
work, such as a base station, a relay station, a scheduler, a
controller, a gateway, a router, an applications server, or any
other device in the telecommunications network. In other
embodiments, the processing system 2000 is in a user-side
device accessing a wireless or wireline telecommunications
network, such as a mobile station, a user equipment (UE), a
personal computer (PC), a tablet, a wearable communica-
tions device (e.g., a smartwatch, etc.), or any other device
adapted to access a telecommunications network.

[0196] In some embodiments, one or more of the inter-
faces 2010, 2012, 2014 connects the processing system 2000
to a transceiver adapted to transmit and receive signaling
over the telecommunications network.
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[0197] FIG. 21 illustrates a block diagram of a transceiver
2100 adapted to transmit and receive signaling over a
telecommunications network. The transceiver 2100 may be
installed in a host device. As shown, the transceiver 2100
includes a network-side interface 2102, a coupler 2104, a
transmitter 2106, a receiver 2108, a signal processor 2110,
and a device-side interface 2112. The network-side interface
2102 may include any component or collection of compo-
nents adapted to transmit or receive signaling over a wireless
or wireline telecommunications network. The coupler 2104
may include any component or collection of components
adapted to facilitate bi-directional communication over the
network-side interface 2102. The transmitter 2106 may
include any component or collection of components (e.g.,
up-converter, power amplifier, etc.) adapted to convert a
baseband signal into a modulated carrier signal suitable for
transmission over the network-side interface 2102. The
receiver 2108 may include any component or collection of
components (e.g., down-converter, low noise amplifier, etc.)
adapted to convert a carrier signal received over the net-
work-side interface 2102 into a baseband signal. The signal
processor 2110 may include any component or collection of
components adapted to convert a baseband signal into a data
signal suitable for communication over the device-side
interface(s) 2112, or vice-versa. The device-side interface(s)
2112 may include any component or collection of compo-
nents adapted to communicate data-signals between the
signal processor 2110 and components within the host
device (e.g., the processing system 2000, local area network
(LAN) ports, etc.).

[0198] The transceiver 2100 may transmit and receive
signaling over any type of communications medium. In
some embodiments, the transceiver 2100 transmits and
receives signaling over a wireless medium. For example, the
transceiver 2100 may be a wireless transceiver adapted to
communicate in accordance with a wireless telecommuni-
cations protocol, such as a cellular protocol (e.g., long-term
evolution (LTE), etc.), a wireless local area network
(WLAN) protocol (e.g., Wi-Fi, etc.), or any other type of
wireless protocol (e.g., Bluetooth, near field communication
(NFC), etc.). In such embodiments, the network-side inter-
face 2102 includes one or more antenna/radiating elements.
For example, the network-side interface 2102 may include a
single antenna, multiple separate antennas, or a multi-
antenna array configured for multi-layer communication,
e.g., single input multiple output (SIMO), multiple input
single output (MISO), multiple input multiple output
(MIMO), etc. In other embodiments, the transceiver 2100
transmits and receives signaling over a wireline medium,
e.g., twisted-pair cable, coaxial cable, optical fiber, etc.
Specific processing systems and/or transceivers may utilize
all of the components shown, or only a subset of the
components, and levels of integration may vary from device
to device.

[0199] FIG. 22 illustrates an embodiment network 2200
for communicating data in which the disclosed methods and
systems may be implemented. The network 2200 includes a
plurality of network components. The network components
may include an access point (AP), a station (STA) (e.g., a
wireless device or user equipment (UE) such as a wireless
phone, etc.), or any other wireless reception point. In an
embodiment, the network 2200 includes an access point
(AP) 2210 having a coverage area 2212, a plurality of STAs
2220, and a backhaul network 2230. In an embodiment, the
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AP may be implemented as transceiver 2100 shown in FIG.
21. In an embodiment, the STAs 2220 may be implemented
as, for example, processing system 2000 shown in FIG. 20.
As used herein, the term AP may also be referred to as a
transmission point (TP) and the two terms may be used
interchangeably throughout this disclosure. In various
embodiments, the AP 2210 may be a base station (BS) also
referred to as a base transceiver station (BTS). Examples of
a BS include an e Node B (eNB), a gNB, and the like. In an
embodiment, the AP 2210 may be a wireless router. Thus,
the AP 2210 may include any component capable of pro-
viding wireless access by, inter alia, establishing uplink
(dashed line) and/or downlink (dotted line) connections with
the STAs 2220. The STAs 2220 may include any component
capable of establishing a wireless connection with the AP
2210. Examples of STAs 2220 include mobile phones, tablet
computers, and laptop computers. The backhaul network
2230 may be any component or collection of components
that allow data to be exchanged between the AP 2210 and a
remote end (not shown). In some embodiments, the network
2200 may include various other wireless devices, such as
relays, femtocells, etc.

[0200] It should be appreciated that one or more steps of
the embodiment methods provided herein may be performed
by corresponding units or modules. For example, a signal
may be transmitted by a transmitting unit or a transmitting
module. A signal may be received by a receiving unit or a
receiving module. A signal may be processed by a process-
ing unit or a processing module. Other steps may be per-
formed by an iterating unit/module, a difference unit/mod-
ule, an adjustment unit/module, a generating unit/module, a
calculating unit/module, an assigning unit/module, an incre-
menting unit/module, a decrementing unit/module, and/or a
setting unit/module. The respective units/modules may be
hardware, software, or a combination thereof. For instance,
one or more of the units/modules may be an integrated
circuit, such as field programmable gate arrays (FPGAs) or
application-specific integrated circuits (ASICs).

[0201] Inan embodiment, a method for lifting a child code
from one or more mother codes for encoding data includes
calculating a plurality of shifts for a child code using a fixed
set of a plurality of lifting functions and a fixed set of
allowed circulant size offsets and/or circulant sizes. The
method also includes determining a combination of circulant
size and lifting function according to a direct simulation, an
information length, a code rate, and a decoder. The method
also includes storing a circulant size offset and/or circulant
size index and a lifting function index corresponding to the
determined combination of circulant offset and/or size and
lifting function in a lifting table. The circulant offset and/or
size index and the lifting function index are used to encode
and decode data.

[0202] In an embodiment, a network component config-
ured for decoding data includes a processor and a computer
readable storage medium storing programming for execu-
tion by the processor. The programming includes instruc-
tions for calculating a plurality of shifts for a child code
using a fixed set of a plurality of lifting functions and a fixed
set of allowed circulant sizes. The programming also
includes instructions for determining a combination of cir-
culant size and lifting function according to a direct simu-
lation, an information length, a code rate, and a decoder. The
programming also includes instructions for storing a circu-
lant size index and a lifting function index corresponding to
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the determined combination of circulant size and lifting
function in a lifting table, the circulant size index and the
lifting function index used to encode and decode data.
[0203] Inanembodiment, a non-transitory computer-read-
able medium storing computer instructions for decoding
data, that when executed by one or more processors, cause
the one or more processors to perform a plurality of steps.
The steps include calculating a plurality of shifts for a child
code using a fixed set of a plurality of lifting functions and
a fixed set of allowed circulant sizes. The steps also include
determining a combination of circulant size and lifting
function according to a direct simulation, an information
length, a code rate, and a decoder. The steps also include
storing a circulant size index and a lifting function index
corresponding to the determined combination of circulant
size and lifting function in a lifting table, the circulant size
index and the lifting function index used to encode and
decode data.

[0204] In an embodiment, a network component includes
a read only memory comprising at least a parity portion of
a mother PCM and a lifting table. The network component
also includes a parity bit generator configured to generate
parity bits from a source word according to a child code. The
child code is determined from the lifting table and the at
least a parity portion of the mother PCM. The lifting table
includes a combination of circulant size and lifting function
according to an information length, a code rate, and a
decoder.

[0205] In an embodiment, a network component includes
a read only memory comprising at least a parity portion of
a mother PCM and a lifting table. The network component
also includes an input/output memory. The network com-
ponent also includes a check node processor configured to
receive a N-bit code word and determine a K-bit source
word according to a child code and store the k=bit source
word in the input/output memory. The child code is deter-
mined from the lifting table and the at least a parity portion
of the mother PCM. The lifting table includes a combination
of circulant size and lifting function according to an infor-
mation length, a code rate, and a decoder.

[0206] In an embodiment, a method for encoding data
includes receiving a K-bit source word input. The method
also includes encoding the K-bit source word input accord-
ing to a LDPC code, a lifting function, and a circulant size
offset to generate an N-bit code word output. The circulant
size and lifting function are determined according to an
information length, a code rate, and a decoder. The method
also includes storing the N-bit code word output in input/
output memory.

[0207] In an embodiment, a method for decoding data
includes receiving an N-bit code word input. The method
also includes decoding the N-bit code word input according
to a LDPC code, a lifting function, and a circulant size offset
to generate an K-bit source word output. The circulant size
and lifting function are determined according to an infor-
mation length, a code rate, and a decoder. The method also
includes storing the K-bit source word output in input/output
memory.

[0208] In any of the preceding aspects, the parity bit
generator is further configured to receive a K-bit source
word and determine an N-bit code word according to the
mother PCM and the lifting table.

[0209] In any of the preceding aspects, shifts of non-zero
circulants for predefined positions are unchanged.
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[0210] In any of the preceding aspects, the lifting table is
shared by at least some the one or more mother codes
obtained by puncturing parity bits to change the rate of the
code.

[0211] In any of the preceding aspects, the lifting func-
tions for defining child shifts from the mother shift are
defined as selecting the given number of bits from the binary
representation of the mother shift at some predefined posi-
tions.

[0212] In any of the preceding aspects, the lifting func-
tions for defining child shifts from the mother shift are
defined by selecting the given number of bits from the binary
representation of the mother shift at some predefined posi-
tions; and selecting the given number of bits from the binary
representation of the mother shift at some other predefined
positions.

[0213] In any of the preceding aspects, the method further
includes repeating the selecting the given number of bits
from the binary representation of the mother shift at some
other predefined positions several times.

[0214] 1In any of the preceding aspects, each iteration of
the selecting the given number of bits from the binary
representation of the mother shift at some other predefined
positions several times comprises a substep and further
comprising summing results of each such substep.

[0215] In any of the preceding aspects, the method also
includes selecting the given number of bits from the binary
representation of the result of the summing at some other
predefined positions.

[0216] In any of the preceding aspects, the lifting func-
tions for defining child shifts from the mother shift select a
fixed number of adjacent bits from a binary representation of
the mother shift value.

[0217] In any of the preceding aspects, the lifting func-
tions for defining child shifts from the mother shift select the
fixed number of most significant bits from the binary rep-
resentation of the mother shift value.

[0218] In any of the preceding aspects, the lifting func-
tions for defining child shifts from the mother shift select the
fixed number of least significant bits from the binary rep-
resentation of the mother shift value.

[0219] Inany of the preceding aspects, the lifting function
firstly selects s bits from the mother shift value at the
predefined s bit positions, wherein s corresponds to the
minimal power of 2 greater than equal to circulant size Z
(i.e. s=[ log,(Z)]), and secondly if this value appears to be
greater or equal to Z, selects s—1 bits from the mother shifts
at some other predefined s-1 positions.

[0220] In any of the preceding aspects, the lifting function
firstly selects s least significant bits from the mother shift
value, and secondly if this value appears to be greater or
equal to Z, it selects s-1 least significant bits from the
mother shifts.

[0221] In any of the preceding aspects, the circulant size
is selected from one of 7., Z, 1, Z, %2, . . .,
7 prigtdZ,, 1, Wherein 7, is a minimal possible circulant
size to encode the given number of information bits and
dZ,,..; 1s a positive integer.

[0222] In any of the preceding aspects, the circulant size
is selected from one of 7., GP2(Z,,, +1), GP2(Z,,, +1)+
1, GP2AZ,, +1)+2, . . ., GP2(Z, +1)+dZ, ., wherein
7 ,rig 18 aminimal possible circulant size to encode the given
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number of information bits, and wherein GP2(A) is a
minimal power of 2 greater or equal to Aand dZ,,., is a
positive integer.

[0223] In any of the preceding aspects, the circulant size
is selected fromoneof 7, ., GP2(Z,, . .+1), GP2(Z,,,, . +1)*2,
GP2(Z,,. +1)*4, ... GP2(Z,,, +1)*2°dZ,, .5, wherein 7,
is a minimal possible circulant size to encode the given
number of information bits, and wherein dZ,, . is a positive
integer.

[0224] In any of the preceding aspects, the circulant size
is selected from one of 7 .., 7, +1, 7,42, . . .,
2 opig*0Z, = GP2AZ,, 447, +1), GP2(Z, +dZ
D+, GP2(Z,,, 47, o+ 142, .. and GP2(Z, |, +dZ, .+
1)+dZ,, ..o}, wherein Z,,,. is a minimal possible circulant
size to encode the given number of information bits, wherein
GP2(A) is a minimal power of 2 greater or equal to A, and
wherein dZ,, .., and dZ,, ., are positive integers.

[0225]
is selected from one of Z
7 o +dZ. GP2(Z,

orig maxl+

In any of the preceding aspects, the circulant size
origr Lomgtls Lopgt2s - -,
orig ‘maxl? arig+dzmaxl+1)*27 GPZ(Zorig+dZmaxl+
D*4,...,GP2Z,, +d7,,, +1)*2°dZ,, -, wherein Z,, , is
a minimal possible circulant size to encode the given num-
ber of information bits, wherein GP2(A) is a minimal power
of 2 greater or equal to A, and wherein dZ,,,., and dZ,,, 5

are positive integers.

[0226]
is selected from one of Z
7 . +d7

orig ‘max1s

In any of the preceding aspects, the circulant size
origr Lorig¥ls Lopigt2s - -,
GP2(Z,,,.+d7,,,..+1), GP2(Z, +dZ,, .+
1)+1, GPZ(Zon.g+dme1+1)+2, e GP2(Zm.g+dme+l)+
dzmaxl.’ GPZ(Zorig+dZmaxl+l)*27 GPZ(Zorig+dZmaxl+1)*4> .
., GP2(Z,,, 47, +1)¥2°d7Z,, .5, Wherein 7, is a
minimal possible circulant size to encode the given number
of information bits, wherein GP2(A) is a minimal power of
2 greater or equal to A, and wherein d7Z dz and
dZ,,..5 are positive integers.

[0227] Inany of the preceding aspects, circulant size, Z, is
limited by a set of allowed values such that Z is in a form
n*2"s where n is a positive integer from a fixed set of
integers and s is a non-negative integer, such that the options
for 7 are first 2 or more smallest numbers that have a form
of n*2"s and are greater or equal to Z,,,,_, wherein Z,,,. is a
minimal possible circulant size to encode the given number
of information bits.

[0228]

maxl? max2’

In any of the preceding aspects, the circulant size
is selected from one of Z,,,., Z,,,,*1, Z,,,,+2, and 7, +3,
wherein 7,,,,, is a minimal possible circulant size to encode
the given number of information bits.

[0229] In any of the preceding aspects, the circulant size
is selected from one of Z,,,,, and 7, +1, wherein 7, . is a
minimal possible circulant size to encode the given number
of information bits.

[0230] In any of the preceding aspects, the circulant size
is selected from one of Z,,,., GP2(Z,,,,.+1), GP2(Z,,,,.+1)+
1, GP2(Z,,, +1)42, . . .. GP2Z,,, +1)+6, wherein Z,,,,. is a
minimal possible circulant size to encode the given number
of information bits, and wherein GP2(A) is a minimal power

of 2 greater than or equal to A.

[0231] In any of the preceding aspects, the circulant size
is selected from one of Z,,,,, GP2(Z,,,,,+1), GP2(Z,,,,+1)+
1, GP2(Z,,, +1)+2, GP2(Z,,,, +1)+3, wherein Z,,,, is a mini-
mal possible circulant size to encode the given number of
information bits.
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[0232] In any of the preceding aspects, the circulant size
is selected from one of Z,,,,, and GP2(Z,,,,,+1), wherein 7.,
is a minimal possible circulant size to encode the given
number of information bits.

[0233] 1In any of the preceding aspects, the circulant size

is selected from ocne of Z,,., Z,,;41, Z,,;;42, Z;0+3,
GP2(Z,,..+1), GP2(Z,,, +1)+1, GP2(Z,,, +1)+2, and GP2
(Z,ig+1)43.

[0234] In any of the preceding aspects, the circulant size
is selected from one of 7., 7, +1, 7, +2, 7, .+3,
GP2(Z,,..+4), GP2(Z,, +4)+1, GP2(Z, +4)+2, GP2
(Zm.g+4)+3.

[0235] In any of the preceding aspects, the circulant size

is selected from one of 7, Z, . +1, GP2(Z . +1), GP2

(Zopg+ 1)1

[0236] In any of the preceding aspects, the circulant size

is selected from one of Z,,,,,, Z,,,.+1, GP2(Z,,,.+2), GP2

(Zorig¥2)+1.

[0237] In any of the preceding aspects, the circulant size

is selected fromone of Z,,,,,,, Z,,,,.+1, Z,,,,,+2, GP2(Z,,, +3),

GP2(Z,,.,+3)+1, GP2(Z,,+3)+2, GP2(Z,, +3)+3, GP2

(Z,,:g*+3)*2.

[0238] 1In any of the preceding aspects, the circulant size

is selected from one of a fixed number of options, and

wherein the number of options is equal to 8, 4 or 2.

[0239] The content of the following references are incor-

porated herein by reference as if reproduced in their entirety:

[0240] R1-164007, “Flexibility of LDPC—Length, Rate
and IR-HARQ”, Samsung

[0241] R1-164697, “LDPC design overview”, Qualcomm
Incorporated

[0242] R1-1609584, “LDPC design for eMBB”, Nokia,
Alcatel-Lucent Shanghai Bell

[0243] Savin V. Split-extended LDPC codes for coded
cooperation[C]//Information Theory and its Applications
(ISITA), 2010 International Symposium on. IEEE, 2010:
151-156.

[0244] IEEE 802.11n™-2009, “Part 11: Wireless LAN
Medium Access Control (MAC) and Physical Layer
(PHY) Specifications Amendment 5: Enhancements for
Higher Throughput.”

[0245] IEEE 802.11ad™-2012, “Part 11: Wireless LAN
medium access control (MAC) and physical layer (PHY)
specifications. Amendment 3: Enhancements for very
high throughput in the 60 GHz band.”.

[0246] R1-1701384, “Chairman’s Notes of Agenda Item
5.1.5 Channel coding”.

[0247] Fossorier M. Quasi-Cyclic Low-Density Parity-
Check Codes From Circulant Permutation Matrices TIT,
V50(8), 2004, p. 1788-1793.

[0248] Channel Coding: Theory, Algorithms, and Appli-
cations by Marc Fossorier, David Declercq, Ezio Biglieri.
Academic Press. July 2014.

[0249] R1-1701707, “Implementation aspects of LDPC
codes”, Huawei, HiSilicon.

[0250] R1-1701708, “Performance evaluation of LDPC
codes,” Huawei, HiSilicon.

[0251] T. I. Richardson and R. L, Urbanke, “Efficient
encoding of low-density parity-check codes”, 1EEE
TRANSACTIONS ON INFORMATION THEORY, Vol-
ume 47, Issue 2, Pages 638-656, August 2002.

[0252] M. P. C. Fossorier et al., “Reduced Complexity
Tterative Decoding of Low-Density Parity Check Codes
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Based on Belief Propagation”, IEEE TRANSACTIONS
ON COMMUNICATIONS, May 1999, Volume 47, Num-
ber 5, Pages 673-680.

[0253] J. Chen et al., “Improved min-sum decoding algo-
rithms for irregular LDPC codes”, PROCEEDINGS OF
THE 2005 IEEE INTERNATIONAL SYMPOSIUM ON
INFORMATION THEORY, Pages 449-453, September
2005.

[0254] Channel Coding: Theory, Algorithms, and Appli-
cations by Marc Fossorier, David Declercq, Ezio Biglieri.
Academic Press. July 2014, p. 191.

[0255] Zhang, Xinmiao. VLSI architectures for modern
error-correcting codes. CRC Press, 2015. pp. 189-224.
[0256] While the invention has been described primarily
with reference to encoding data for wireless transmission,
those of ordinary skill in the art will recognize that the
invention is not limited to wireless transmission but may be
applied to wired and optical transmission systems as well.
[0257] While this invention has been described with ref-
erence to illustrative embodiments, this description is not
intended to be construed in a limiting sense. Various modi-
fications and combinations of the illustrative embodiments,
as well as other embodiments of the invention, will be
apparent to persons skilled in the art upon reference to the
description. It is therefore intended that the appended claims

encompass any such modifications or embodiments.

What is claimed is:

1. A method for encoding data, comprising:

receiving a K-bit source word input;

encoding the K-bit source word input according to a

LDPC code, a lifting function, and a circulant size
offset to generate an N-bit code word output, wherein
the circulant size and lifting function are determined
according to an information length, a code rate, and a
decoder; and

storing the N-bit code word output in input/output

memory.

2. The method of claim 1, wherein circulant size, Z, is
limited by a set of allowed values such that Z is in a form
n*2"s where n is a positive integer from a fixed set of
integers and s is a non-negative integer, such that the options
for 7 are first 2 or more smallest numbers that have a form
of n*2’s and are greater or equal to 7., wherein Z,, ,_ is a
minimal possible circulant size to encode the given number
of information bits.

3. The method of claim 1, wherein shifts of non-zero
circulants for predefined positions are unchanged.

4. The method of claim 1, wherein the lifting table is
shared by at least some the one or more mother codes
obtained by puncturing parity bits to change the rate of the
code.

5. The method of claim 1, where the lifting functions for
defining child shifts from the mother shift are defined as
selecting the given number of bits from the binary repre-
sentation of the mother shift at some predefined positions.

6. The method of claim 1, where the lifting functions for
defining child shifts from the mother shift are defined by:

selecting the given number of bits from the binary rep-

resentation of the mother shift at some predefined
positions; and

selecting the given number of bits from the binary rep-

resentation of the mother shift at some other predefined
positions.
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7. The method of claim 1, further comprising repeating
the selecting the given number of bits from the binary
representation of the mother shift at some other predefined
positions several times.

8. The method of claim 1, wherein each iteration of the
selecting the given number of bits from the binary repre-
sentation of the mother shift at some other predefined
positions several times comprises a substep and further
comprising summing results of each such substep.

9. The method of claim 1, further comprising:

selecting the given number of bits from the binary rep-

resentation of the result of the summing at some other
predefined positions.

10. The method of claim 1, where the lifting functions for
defining child shifts from the mother shift select a fixed
number of adjacent bits from a binary representation of the
mother shift value.

11. The method of claim 1, wherein the lifting functions
for defining child shifts from the mother shift select the fixed
number of most significant bits from the binary representa-
tion of the mother shift value.

12. The method of claim 1, wherein the lifting functions
for defining child shifts from the mother shift select the fixed
number of least significant bits from the binary representa-
tion of the mother shift value.

13. The method of claim 1, wherein the lifting function
firstly selects s bits from the mother shift value at the
predefined s bit positions, wherein s corresponds to the
minimal power of 2 greater than equal to circulant size 7
(ie. s=7[ log,(Z)]), and secondly if this value appears to be
greater or equal to Z, selects s—1 bits from the mother shifts
at some other predefined s-1 positions.

14. The method of claim 1, wherein the lifting function
firstly selects s least significant bits from the mother shift
value, and secondly if this value appears to be greater or
equal to Z, it selects s—1 least significant bits from the
mother shifts.

15. The method of claim 1, wherein the circulant size is
selected from one of 7., 7, +1, Z,,, 42, . . ., 7, +
dZ,,,,1, wherein Z,,,,, is a minimal possible circulant size to
encode the given number of information bits and dZ
a positive integer.

16. The method of claim 1, wherein the circulant size is
selected from one of 7, , GP2(Z,, . +1), GP2(Z,,,+1)+1,
GP2AZ,,. + )42, . .., GP2AZ,, +1)+dZ, . », wherein 7,
is a minimal possible circulant size to encode the given
number of information bits, and wherein GP2(A) is a
minimal power of 2 greater or equal to A and dZ,,,,, is a
positive integer.

17. The method of claim 1, wherein the circulant size is
selected from one of Z,,,,, GP2(Z,,,,,+1), GP2(Z,,,,+1)*2,
GP2AZ,,, +1)*4, ... GP2(Z,, +1)*2'dZ,, ., wherein Z,,
is a minimal possible circulant size to encode the given
number of information bits, and wherein dZ,,, , is a positive
integer.

18. The method of claim 1, wherein the circulant size is
selected from one of 7., 7, +1, 7, .42, . . ., Z, +
d7,, .., GP2(Z,, 447, . +1), GP2AZ, 447,  +1)+]1,
GP2(Z,, 447, . +1)+2, . . ., and GP2(Z,,, +dZ +1)+
dZ,,.}, wherein 7, is a minimal possible circulant size
to encode the given number of information bits, wherein
GP2(A) is a minimal power of 2 greater or equal to A, and
wherein dZ,, ., and dZ,, ., are positive integers.
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19. The method of claim 1, wherein the circulant size is
selected from one of 7., 7, +1, 7,42, . . ., 7, +
a7, 1, GP2(Z,,, 447, +1)*2, GP2(Z,, A7, +1)¥4,.
o, GP2Z,,, 47, #1)¥2°dZ7,, 5, Wherein 7, . is a
minimal possible circulant size to encode the given number
of information bits, wherein GP2(A) is a minimal power of
2 greater or equal to A, and whereindZ ,, , and dZ,,,  are
positive integers.

20. The method of claim 1, wherein the circulant size is
selected from one of Z,.qy Z, 01, Zoo#2, oy Lo+
A7 et

GP2(Z,,, +dZ,,,.,+1), GP2(Z,,, +dZ,, . +1). . . . .
GP2(Z

it AZ b2 L GP2AZ 4dZ,, . +1)+dZ-
marzs GP2(Z oy, AL, #1)%2, GP2(Z,, 47, o1 +1)44, . .
. GP2(Z,,, 42, +1)*2°dZ,, .5, Wherein 7, is a mini-
mal possible circulant size to encode the given number of
information bits, wherein GP2(A) is a minimal power of 2
greater or equal to A, and wherein dZ dz and

dZ,,..; are positive integers.

max1s max29

21. The method of claim 1, wherein the circulant size is
selectf?d from.one qf .Zm.g, Zoﬁg+1,.Zorig+2, .and 2 prig*3
wherein 7,,,,, is a minimal possible circulant size to encode
the given number of information bits.

22. The method of claim 1, wherein the circulant size is
selected from one of Z,,,, and 7, +1, wherein 7, is a

minimal possible circulant size to encode the given number
of information bits.

23. The method of claim 1, wherein the circulant size is
selected from one of Z,,., GP2(Z,,,,+1), GP2(Z,, ,+1)+],
GP2(Z,,; +1)+2, . .., GPAZ,, +1)+6, wherein 7, is a
minimal possible circulant size to encode the given number
of information bits, and wherein GP2(A) is a minimal power
of 2 greater than or equal to A.

24. The method of claim 1, wherein the circulant size is
selected from one of Z,,,,., GP2AZ,,,.+1), GP2(Z,,,,+1)+1,
GP2(Z,,. +1)+2, GP2A(Z,,,+1)+3, wherein 7, is a mini-
mal possible circulant size to encode the given number of
information bits.

25. The method of claim 1, wherein the circulant size is
selected from one of 7, and GP2(Z ,, +1), wherein Z

orig orig

is a minimal possible circulant size to encode the given
number of information bits.

26. The method of claim 1, wherein the circulant size is
selected from one of 7., Z,,.,+1, Z,,.,*2, Z,,,,+3, GP2
(Zongtl), GP2(Z,, +1)+1, GP2(Z,, +1)+2, and GP2

Zorat )43,
27. The method of claim 1, wherein the circulant size is
selected from one of 7., 7, +1, 7, +2, 7, +3, GP2

gzm.g+4), GP2Z, i 4)+1, GP2Z,,, 44)+2, GP2(Z,,. +4)+

28. The method of claim 1, wherein the circulant size is

selected from one of Z Z,..+1, GP2(Z . +1), GP2
(Z,,..+1)+1.

orig

orig? orig orig
29. The method of claim 1, wherein the circulant size is
selected from one of 7 Z,..+1, GP2(Z . +2), GP2

(Zprit2)+1.

orig

orig? orig orig

30. The method of claim 1, wherein the circulant size is
selected from one of 7., Z,,..*1, Z,,.,+2, GP2(Z,,, +3),
GP2(Z,,. +3)+1, GP2(Z,, +3)+2, GP2(Z,, +3)+3, GP2
(Zyio¥3)%2.

orig

31. The method of claim 1, wherein the circulant size is
selected from one of a fixed number of options, and wherein
the number of options is equal to 8, 4 or 2.
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32. A network component, comprising;

aread only memory comprising at least a parity portion of
a mother PCM and a lifting table; and

a parity bit generator configured to generate parity bits
from a source word according to a child code, the child
code determined from the lifting table and the at least
a parity portion of the mother PCM, the lifting table
comprising a combination of circulant size and lifting
function according to an information length, a code
rate, and a decoder.

33. A network component, comprising;

aread only memory comprising at least a parity portion of
a mother PCM and a lifting table;

an input/output memory; and

a check node processor configured to receive a N-bit code
word and determine a K-bit source word according to
a child code and store the K-bit source word in the

18
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input/output memory, the child code determined from
the lifting table and the at least a parity portion of the
mother PCM, the lifting table comprising a combina-
tion of circulant size and lifting function according to
an information length, a code rate, and a decoder.

34. A method for decoding data, comprising:

receiving an N-bit code word input;

decoding the N-bit code word input according to a LDPC
code, a lifting function, and a circulant size offset to
generate an K-bit source word output, wherein the
circulant size and lifting function are determined
according to an information length, a code rate, and a
decoder; and

storing the K-bit source word output in input/output
memory.



	Bibliography
	Abstract
	Drawings
	Description
	Claims

