(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

J

=

(19) World Intellectual Property
Organization
International Bureau

(43) International Publication Date
09 August 2018 (09.08.2018)

(10) International Publication Number

WO 2018/141277 Al

WIPO I PCT

(51) International Patent Classification:
HO3M 13/05 (2006.01)

sey Alexandrovich; 3k2 Rokotova Street, Apt.64, Moscow,
117593 (RU).

wo 20187141277 A1 I 0K 000 A

(21) International Application Number: (81) Designated States (unless otherwise indicated, for every
PCT/CN2018/075185 kind of national protection available). AE, AG, AL, AM,
(22) International Filing Date: AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY, BZ,
O O 3 February 2018 (03.02 2018) CA, CH, CL, CN, CO, CR, CU, CZ, DE, DJ, DK, DM, DO,
ebruary (03.02. DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, HN,
(25) Filing Language: English HR, HU, ID, IL, IN, IR, IS, JO, JP, KE, KG, KH, KN, KP,
26) Publication L . Enelish KR,KW,KZ,LA,LC,LK,LR,LS, LU, LY, MA, MD, ME,
(26) Publication Language: nglus MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ,
(30) Priority Data: OM, PA, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SA,
62/454,416 03 February 2017 (03.02.2017) US SC, SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, TN,
15/887,148 02 February 2018 (02.02.2018) US TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW.
(71) Applicant: HUAWEI TECHNOLOGIES CO., LTD. (84) Designated States (unless otherwise indicated, for every
[CN/CN]; Huawei Administration Building, Bantian, Long- kind of regional protection available). ARTPO (BW, GH,
gang District, Shenzhen, Guangdong 518129 (CN). GM,KE, LR, LS, MW,MZ,NA, RW, SD, SL, ST, SZ, TZ,
. _— UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, RU, TJ,
(72) Inventors: PANTELEEV? Pavel Anatolyevich; Sosno- TM), European (AL, AT, BE, BG, CH, CY, CZ, DE, DK,
vaya Street,14, Apt.47, Odintsovo, 143006 (RU). TONG, EE. ES. FL FR. GB. GR. HR. HU. IE. IS. IT. LT. LU. LV
Wen; 12 V-Vhlte.stone Drive, Ottawa, Ontario K2C 4A7 MC, MK, MT, NL, NO, PL, PT, RO, RS, SE, SL SK, SM,
(CA). L1, Jiang; 1, Altutievskoe shosse, M-oscow, 127196 TR), OAPI (BF, BJ, CF, CG, CL, CM, GA, GN, GQ, GW,
(RU). KALACHEYV, Gleb Vyacheslavovich; 26 Bakin- KM, ML, MR, NE, SN, TD, TG)
skih Komissarov Street 8-3, Flat 176, Moscow, 119526 ’ ’ T ’
(RU). MAZURENKO, Ivan Leonidovich; Molodyozh- Published:
naya Street 36A-51, Apt.Sl,‘ Khlmlg, 141407 RU). with international search report (Art. 21(3))
GASANOV, Elyar Eldarovich; Grina Street 40-24,
Apt.245, Moscow, 117628 (RU). LETUNOVSKIY, Alek-
(54) Title: OFFSET LIFTING METHOD
300
\' 302 304
3 .
| | ¢ LAYER 1
[[
| | 306 2
EXTENSION ! ! o
PART
! ! . e LAVER?
T T
308 ! ! e LAYER p
L L

310 312 314

FIG. 3

(57) Abstract: A method and system for offset lifting is provided. In an embodiment, a method for encoding data includes receiving a
K-bit source word input. The method also includes encoding the K-bit source word input according to a LDPC code, a lifting function,
and a circulant size offset to generate an N-bit code word output. The circulant size and lifting function are determined according to an
information length, a code rate, and a decoder. The method also includes storing the N-bit code word output in input/output memory.

WO 2018/141277 PCT/CN2018/075185

OFFSET LIFTING METHOD

CROSS-REFERENCE TO RELATED APPLICATIONS

[1] This application claims the benefit of U.S. Provisional Application No. 62/454,416,
filed on February 3, 2017 entitled “Offset Lifting Method” and US Patent Application No.
15/887,148 filed on February 2, 2018 entitled “Offset Lifting Method” which application is

hereby incorporated herein by reference.
TECHNICAL FIELD

[2] The present application relates to data storage and communication technologies, in

particular to methods and systems for encoding and decoding data using parity check codes.
BACKGROUND

[3] Parity checking codes are used to facilitate the recovery of stored data as well as data
transmitted through a communications channel. One type of parity check code is known as
Low-Density-Parity-Check (LDPC), which is characterized by a sparse Parity Check Matrix
(PCM), i.e., a PCM having a low percentage of 1’s. An LDPC encoder at a transmitter is used for
encoding source words to generate codewords. An LDPC decoder at a receiver is used for
decoding the received codewords. LDPC codes of various rates are being widely adopted, or
considered for adoption, in data storage and wireless communications technologies and

standards such as those relating to IEEE 802.11 and 5G.

[4] Almost all LDPC codes used in practice are quasi-cyclic (QC) LDPC with QC parity-
check matrices, in which a quasi-cyclic identity matrix can be combined with an array of shift
information (i.e., QC shift PCM) to define an expanded QC PCM (e.g., a QC LDPC PCM). QC
LDPC encoding and recovery algorithms and the storage of PCM information can consume
hardware resources, and accordingly there is a need for methods, systems, and technologies that
improve the efficiency of and reduce the hardware resources required for QC LDPC coding

systems.

WO 2018/141277 PCT/CN2018/075185

SUMMARY

[5] In an embodiment, a method for encoding data includes receiving a K-bit source
word input. The method also includes encoding the K-bit source word input according to a
LDPC code, a lifting function, and a circulant size offset to generate an N-bit code word output.
The circulant size and lifting function are determined according to an information length, a code
rate, and a decoder. The method also includes storing the N-bit code word output in

input/output memory.

[6] In an embodiment, a method for decoding data includes receiving an N-bit code

word input. The method also includes decoding the N-bit code word input according to a LDPC
code, a lifting function, and a circulant size offset to generate an K-bit source word output. The
circulant size and lifting function are determined according to an information length, a code rate,
and a decoder. The method also includes storing the K-bit source word output in input/output

memory.

[7] In an embodiment, a network component includes a read only memory comprising at
least a parity portion of a mother PCM and a lifting table. The network component also includes
a parity bit generator configured to generate parity bits from a source word according to a child
code. The child code is determined from the lifting table and the at least a parity portion of the
mother PCM. The lifting table includes a combination of circulant size and lifting function

according to an information length, a code rate, and a decoder.

[8] In an embodiment, a network component includes a read only memory comprising at
least a parity portion of a mother PCM and a lifting table. The network component also includes
an input/output memory. The network component also includes a check node processor
configured to receive a N-bit code word and determine a K-bit source word according to a child
code and store the k=Dbit source word in the input/output memory. The child code is determined
from the lifting table and the at least a parity portion of the mother PCM. The lifting table
includes a combination of circulant size and lifting function according to an information length,

a code rate, and a decoder.

9] In an embodiment, a method for lifting a child code from one or more mother codes
for encoding data includes calculating a plurality of shifts for a child code using a fixed set of a
plurality of lifting functions and a fixed set of allowed circulant size offsets and/or circulant sizes.
The method also includes determining a combination of circulant size and lifting function

according to a direct simulation, an information length, a code rate, and a decoder. The method

WO 2018/141277 PCT/CN2018/075185

also includes storing a circulant size offset and/or circulant size index and a lifting function
index corresponding to the determined combination of circulant offset and/or size and lifting
function in a lifting table. The circulant offset and/or size index and the lifting function index

are used to encode and decode data.

[10] In an embodiment, a network component configured for decoding data includes a
processor and a computer readable storage medium storing programming for execution by the
processor. The programming includes instructions for calculating a plurality of shifts for a child
code using a fixed set of a plurality of lifting functions and a fixed set of allowed circulant sizes.
The programming also includes instructions for determining a combination of circulant size and
lifting function according to a direct simulation, an information length, a code rate, and a
decoder. The programming also includes instructions for storing a circulant size index and a
lifting function index corresponding to the determined combination of circulant size and lifting
function in a lifting table, the circulant size index and the lifting function index used to encode

and decode data.

[11] In an embodiment, a non-transitory computer-readable medium storing computer
instructions for decoding data, that when executed by one or more processors, cause the one or
more processors to perform a plurality of steps. The steps include calculating a plurality of
shifts for a child code using a fixed set of a plurality of lifting functions and a fixed set of allowed
circulant sizes. The steps also include determining a combination of circulant size and lifting
function according to a direct simulation, an information length, a code rate, and a decoder. The
steps also include storing a circulant size index and a lifting function index corresponding to the
determined combination of circulant size and lifting function in a lifting table, the circulant size

index and the lifting function index used to encode and decode data.

[12] In any of the preceding aspects, circulant size, Z, is limited by a set of allowed values
such that Z is in a form n*2”s where n is a positive integer from a fixed set of integers and s is a
non-negative integer, such that the options for Z are first 2 or more smallest numbers that have
a form of n*2”s and are greater or equal to Z.ig, Wwherein Z:ig is a minimal possible circulant size

to encode the given number of information bits.

[13] In any of the preceding aspects, the parity bit generator is further configured to
receive a K-bit source word and determine an N-bit code word according to the mother PCM
and the lifting table.

WO 2018/141277 PCT/CN2018/075185

[14] In any of the preceding aspects, shifts of non-zero circulants for predefined positions
are unchanged.
[15] In any of the preceding aspects, the lifting table is shared by at least some the one or

more mother codes obtained by puncturing parity bits to change the rate of the code.

[16] In any of the preceding aspects, the lifting functions for defining child shifts from the
mother shift are defined as selecting the given number of bits from the binary representation of

the mother shift at some predefined positions.

[17] In any of the preceding aspects, the lifting functions for defining child shifts from the
mother shift are defined by selecting the given number of bits from the binary representation of
the mother shift at some predefined positions; and selecting the given number of bits from the

binary representation of the mother shift at some other predefined positions.

[18] In any of the preceding aspects, the method further includes repeating the selecting
the given number of bits from the binary representation of the mother shift at some other

predefined positions several times.

[19] In any of the preceding aspects, each iteration of the selecting the given number of
bits from the binary representation of the mother shift at some other predefined positions

several times comprises a substep and further comprising summing results of each such substep.

[20] In any of the preceding aspects, the method also includes selecting the given number
of bits from the binary representation of the result of the summing at some other predefined

positions.

[21] In any of the preceding aspects, the lifting functions for defining child shifts from the
mother shift select a fixed number of adjacent bits from a binary representation of the mother

shift value.

[22] In any of the preceding aspects, the lifting functions for defining child shifts from the
mother shift select the fixed number of most significant bits from the binary representation of

the mother shift value.

[23] In any of the preceding aspects, the lifting functions for defining child shifts from the
mother shift select the fixed number of least significant bits from the binary representation of

the mother shift value.

[24] In any of the preceding aspects, the lifting function firstly selects s bits from the

mother shift value at the predefined s bit positions, wherein s corresponds to the minimal power

4

WO 2018/141277 PCT/CN2018/075185

of 2 greater than equal to circulant size Z (i.e. s = [log,(Z)1]), and secondly if this value appears
to be greater or equal to Z, selects s-1 bits from the mother shifts at some other predefined s-1

positions.

[25] In any of the preceding aspects, the lifting function firstly selects s least significant
bits from the mother shift value, and secondly if this value appears to be greater or equal to Z, it

selects s-1 least significant bits from the mother shifts.

[26] In any of the preceding aspects, the circulant size is selected from one of Zosig, Zorig+1,
Zorig+2, ... , Zorig+dZmaxi, Wherein Zoig is a minimal possible circulant size to encode the given

number of information bits and dZmax is a positive integer.

[27] In any of the preceding aspects, the circulant size is selected from one of Zorg,
GP2(Zorig+1), GP2(Zorig+1)+1, GP2(Zorig+1)+2, ..., GP2(Zorig+1)+dZmaxe, Wherein Zorg is a minimal
possible circulant size to encode the given number of information bits, and wherein GP2(A) is a

minimal power of 2 greater or equal to A and dZmax is a positive integer.

[28] In any of the preceding aspects, the circulant size is selected from one of Zorg,
GP2(Zorig+1), GP2(Zorig+1)*2, GP2(Zorig+1)*4, ... GP2(Zorig+1)*2" AZmaxs, WhereinZoig is a minimal
possible circulant size to encode the given number of information bits, and wherein dZmax; is a

positive integer.

[29] In any of the preceding aspects, the circulant size is selected from one of Zoig, Zorig+1,
Zorigt2, ... , Ziorig+dZmaxi, GP2(Zorig+dZmaxi+1), GP2(ZorigtdZmaxi+1)+1, GP2(Zorig+dZmaxi+1)+2, ...,
and GP2(Zorig+dZmaxi+1)+dZmaxo}, WhereinZosg is a minimal possible circulant size to encode the
given number of information bits, wherein GP2(A) is a minimal power of 2 greater or equal to A,

and wherein dZmax and dZmax. are positive integers.

[30] In any of the preceding aspects, the circulant size is selected from one of Zoig, Zorig+1,
Zorig+2, ceey Zorig+dZmax1, GP2(Zorig+dZmax1+1)*2, GP2(Zorig+dZmax1+1)*4, ceey
GP2(ZorigtdZmaxi+1)*2” dZmax3, Wwherein Zaig is @ minimal possible circulant size to encode the
given number of information bits, wherein GP2(A) is a minimal power of 2 greater or equal to A,

and wherein dZmax and dZmax; are positive integers.

[31] In any of the preceding aspects, the circulant size is selected from one of Zoig, Zorig+1,
Zorigt2, ...y ZorigtQZmaxi, GP2(Zorig+AZmaxi+1), GP2(ZorigtdZmaxi+1)+1, GP2(Zosig+dZmaxa+1)+2, ...,
GP2(Zorig+dZmaxi+1)+AZmaxz2, GP2(ZorigtdZmaxi+1)*2, GP2(Zorig+dZmaxi+1)*4, ...,
GP2(Zorig+dZmaxi+1)*2" dZmax3, whereinZaig is a minimal possible circulant size to encode the

WO 2018/141277 PCT/CN2018/075185

given number of information bits, wherein GP2(A) is a minimal power of 2 greater or equal to A,

and wherein dZmaxi, dZmaxs, and dZmax; are positive integers.

[32] In any of the preceding aspects, the circulant size is selected from one of Zoig, Zorig+1,
Zorig+2, and Zorig+3, wherein Zg is a minimal possible circulant size to encode the given number

of information bits.

[33] In any of the preceding aspects, the circulant size is selected from one of Zuiz and
Zorig+1, wherein Zorig is @ minimal possible circulant size to encode the given number of

information bits.

[34] In any of the preceding aspects, the circulant size is selected from one of Zorg,
GP2(Zorig+1), GP2(Zorig+1)+1, GP2(Zorig+1)+2, ..., GP2(Zorig+1)+6, wherein Zo.is is a minimal
possible circulant size to encode the given number of information bits, and wherein GP2(A) is a

minimal power of 2 greater than or equal to A.

[35] In any of the preceding aspects, the circulant size is selected from one of Zorg,
GP2(Zorig+1), GP2(Zorig+1)+1, GP2(Zorig+1)+2, GP2(Zorig+1)+3, wherein Zqrig is a minimal possible

circulant size to encode the given number of information bits.

[36] In any of the preceding aspects, the circulant size is selected from one of Zuiz and
GP2(Zorig+1), wherein Zoig is a minimal possible circulant size to encode the given number of

information bits.

[37] In any of the preceding aspects, the circulant size is selected from one of Zosig, Zorig+1,
Zorig+2, Zorigt3, GP2(Zorig+1), GP2(Zorig+1)+1, GP2(Zorig+1)+2, and GP2(Zorig+1)+3.

[38] In any of the preceding aspects, the circulant size is selected from one of Zosig, Zorig+1,
Zorig+2, Zorigt3, GP2(Zorigt+4), GP2(Zorig+4)+1, GP2(Zorig+4)+2, GP2(Zorig+4)+3-

[39] In any of the preceding aspects, the circulant size is selected from one of Zoig, Zorig+1,
GP2(Zorig+1), GP2(Zorig+1)+1.

[40] In any of the preceding aspects, the circulant size is selected from one of Zosig, Zorig+1,
GP2(Zorig+2), GP2(Zorig+2)+1.

[41] In any of the preceding aspects, the circulant size is selected from one of Zosig, Zorig+1,
Zorig+2, GP2(Zorig+3), GP2(Zorig+3)+1, GP2(Zorig+3)+2, GP2(Zorig+3)+3, GP2(Zorig+3)*2.

[42] In any of the preceding aspects, the circulant size is selected from one of a fixed

number of options, and wherein the number of options is equal to 8, 4 or 2.

WO 2018/141277 PCT/CN2018/075185

[43] The disclosed methods and systems are applicable to any QC-LDPC code and
provides 1) avoidance of “catastrophic” cases in length adaption scheme (e.g., when some simple
modulo/floor or other lifting code with Z=Zorg produces very poor performance); 2) improved
error floor performance; and 3) a nested QC-LDPC code design which is optimized for all
possible information length K and rates having the disclosed lifting schemes as a target.

Furthermore, these advantages are provided with low additional hardware cost.

WO 2018/141277 PCT/CN2018/075185

BRIEF DESCRIPTION OF THE DRAWINGS

[44] For a more complete understanding of the present invention, and the advantages
thereof, reference is now made to the following descriptions taken in conjunction with the

accompanying drawings, in which:

[45] Fig. 1is a diagram of an embodiment of a parity check matrix;
[46] Fig. 2 is a diagram of an embodiment of a sub-matrix B;
[47] Fig. 3 is a diagram of an embodiment of a quasi-cyclic (QC) matrix with a quasi row

orthogonality (QRO) property in the extension part;
[48] Fig. 4 is an example of a QC matrix with QRO property in the extension part;

[49] Fig. 5 is a graph showing performance of an embodiment of a length adaption
scheme, Es/No(dB) at BLER=10"2;

[50] Fig. 6 is a graph showing performance of an embodiment of a length adaption
scheme, Es/No(dB) at BLER= 104;

[51] Fig. 7 is a diagram of an embodiment of an incremental redundancy hybrid

automatic repeat request (IR-HARQ);

[52] Fig. 8 is a diagram showing a 3 by 6 parity check matrix (PCM), H, and its

corresponding Tanner graph representation;

[53] Fig. 9 is a diagram showing a 4 by 6 PCM, H, and its corresponding Tanner graph
representation;
[54] Fig. 10 is a flowchart of an embodiment of an offset lifting method for encoding data

using a low density parity code;

[55] Fig. 11 is a diagram of an embodiment of a base matrix matrix H, for an encoding

procedure for LDPC matrix with lower-triangular extension;

[56] Fig. 12 is a diagram of an embodiment of a lower triangular extension for each parity-

check matrix H;;

[57] Fig. 13 is a diagram showing an embodiment of an IRA LDPC parity-check matrix
structure;
[58] Fig. 14 depicts a table showing an example of a QC matrix with IRA structure;

WO 2018/141277 PCT/CN2018/075185

[59] Fig. 15 is a diagram showing an embodiment of a matrix with an IRA structure which

can be used with the disclosed encoding procedures;

[60] Fig. 16 is a block diagram of an embodiment of a LDPC encoder;
[61] Fig. 17 is a block diagram of an embodiment of an LDPC decoder;
[62] Fig. 18 is a flowchart of an embodiment of a method for encoding data using LDPC,

the disclosed lifting tables, and the disclosed lifting functions;

[63] Fig. 19 is a flowchart of an embodiment of a method for decoding data using LDPC,
the disclosed lifting tables, and the disclosed lifting functions;

[64] Fig. 20 illustrates a block diagram of an embodiment processing system for

performing methods described herein, which may be installed in a host device;

[65] Fig. 21 illustrates a block diagram of a transceiver adapted to transmit and receive

signaling over a telecommunications network; and

[66] Fig. 22 illustrates an embodiment network for communicating data in which the

disclosed methods and systems may be implemented.

WO 2018/141277 PCT/CN2018/075185

DETAILED DESCRIPTION OF ILLUSTRATIVE EMBODIMENTS

[67] The making and using of the presently preferred embodiments are discussed in detail
below. It should be appreciated, however, that the present invention provides many applicable
inventive concepts that can be embodied in a wide variety of specific contexts. The specific
embodiments discussed are merely illustrative of specific ways to make and use the invention,

and do not limit the scope of the invention.

[68] Disclosed herein are systems, methods, and devices for encoding/decoding data
using LDPC. Various embodiments include offset lifting procedures to determine a circulant
offset to encode/decode data. Furthermore, various embodiments include non-sequential
circulant offsets and larger circulant offsets than the prior art. Various embodiments also
include multiple lifting functions. Having large circulant offsets allows the offset to be
determined more quickly and consumes fewer system resources than the prior art methods (e.g.,
less amount of offline simulations during lifting table construction, less memory needed to store
the lifting table in the encoder/decoder, etc.). Furthermore, different lifting functions may be

better suited for encoding different length code words.

[69] Fig. 1is a diagram of an embodiment of a parity check matrix 100. In an
embodiment, for at least one base graph, the parity check matrix includes five sub-matrices
identified as A 102, B 104, C 106, D 108, and E 110. Sub-matrix A 102 may contain systematic
and parity bits.

[70] Fig. 2 is a diagram of an embodiment of a sub-matrix B 200. Sub-matrix B 200 is
not necessarily square. Sub-matrix B 200 includes elements 202 of 1’s and empty elements 204.
One of the columns 206 of sub-matrix B 200 has a weight of three. The columns 208, 210, 212,

214 of sub-matrix B 200 after the weight-three column 206 have a dual diagonal structure.

[71] Returning to Fig. 1, sub-matrix C 106 is a zero matrix. Sub-matrix E 110 is an
identity matrix. In other aspects, other structures can be considered for other base graphs, if

any.

[72] Disclosed herein are a nested family of irregular QC LDPC codes obtained from one
high rate base matrix that follows the working assumption described above with respect to Figs.
1and 2, and a quasi row orthogonal structure to make a trade off between performance and

complexity.

[73] Description for LDPC rate matching

10

WO 2018/141277 PCT/CN2018/075185

[74] Single parity check (SPC) extension is a common method for LDPC to realize rate
matching which is called Raptor-like structure or Nested Base graph structure. This method has
been adopted by several companies. It usually starts from a high rate LDPC matrix with dual-
diagonal or lower triangular structure. To achieve lower rate, the high rate matrix is extended

with one single parity check equation and one parity bit at a time.
[75] LDPC Design

[76] In an embodiment, a Quasi-Cyclic (QC) LDPC codes with QC parity-check matrices is
used, where each circulant is either a circulant permutation matrix (CPM) or the zero matrix.
Usually a quasi-cyclic m,Z x n;,Z parity-check matrix (PCM) H with m,, circulant row blocks, n,,

circulant column blocks, and the circulant size Z is represented in the following form:

eP11 P12 v gPiny,
H= eP21 P22 v gPamy,
ePmp1 gPmpz .. oPmyny,

where the integers p;; are in the range [-1,Z — 1]. Here we denote by e”4 the Z x Z CPM
corresponding to the right cyclic shift by p;; positions if 0 < p;; < Z and the Z x Z zero matrix if
pi; = —1. We call the integers p;; exponents and the corresponding m,, X n,, integer matrix

EH) = (p; j)mbxnb the exponent matrix of H. In what follows we usually define QC LDPC codes
and their PCMs by the corresponding exponent matrices.
[77] Nested QC LDPC Code

[78] Fig. 3 is a diagram of an embodiment of a QC matrix 300 with QRO property in the
extension part. Disclosed herein is a nested family of irregular QC LDPC codes obtained from
one high-rate base code as an extension by several single parity-check codes (SPCs). The QC
matrix 300 includes a base matrix 302, dual-diagonal structure 304, an identity matrix 306 and
an extension part 308 that includes layers 1, 2, ... p. QC matric 300 also includes two punctured
circulant blocks 310, information bits 312, and parity bits 314 as shown in Fig. 3. The general
structure of the corresponding exponent matrices is shown in Fig.3, where the base matrix 302
is the shaded upper left part of QC matrix 300 and corresponds to the base code. The extension
part 308 is the lower portion of QC matrix 300. In an aspect, it is disclosed to use base matrices

with dual-diagonal structure in their parity part. It is also easy to see that the full matrix 300

-11-

WO 2018/141277 PCT/CN2018/075185

with the extension part 308 also supports a low-complexity encoding. In an aspect, the number
of information columns is set to 16 in order to achieve the peak throughput of 20 Giga bits per

second (Gbps) with more parallelism.

[79] In order to obtain codes with different number of information bits K and parity bits
N, a length and rate adaption scheme is used, of which a more detailed description is provided
below. This is achieved by using puncturing both information and parity bits, and also
shortening by zero padding in the information parts of the codeword. In various aspects, in all
the codes for all rates, symbols are punctured that correspond to the first two circulant column
blocks as it is shown in Fig. 3. The first of these two punctured circulant columns 310 has the
highest column weight among all the circulant columns 310 and is called the High-Weight (HW)
column. The structure of base matrix 302 is similar to the structure utilized in the PCMs for QC
LDPC codes described in the IEEE 802.11ad™-2012 standard.

[80] In order to obtain a high level of parallelism during the decoding, the structure of the
extension part 308 is further restricted. A group of rows in the extension part 308 has the
feature of quasi row orthogonality (QRO) if for each pair of different rows in this group they are
allowed to have more than one common positive entries (not equal to -1) only in the HW
circulant column (see Fig. 3). It is worth noting that a block-parallel decoder could encounter
fewer conflicts if multiple cores (blocks) are processed simultaneously, thanks to the QRO
structure. To go a step further, one can also design the rows at the border of two neighboring
groups such that they are not overlapped except for HW columns such that the implementation
is more flexible, which is defined as a Non-Conflict (NC) property.

[81] In an aspect, exponent matrices with several groups of quasi orthogonal rows in the

extension part 308 are used and such matrix is said to have the quasi row orthogonal structure.

[82] Fig. 4 is an example of a QC matrix 400 with QRO property in the extension part. ZC
matrix 400 is a simple example of an exponent matrix with QRO structure (all empty cells
contain -1). QC matrix 400 includes a base matrix 402, an extension part 410, two punctured
circulant blocks 404, information bits 406, and parity bits 408. QC matrix 400 is similar to QC
matrix 300. In the depicted example, there are 77 layers in the extension part 410 of the matrix
400.

[83] The disclosed methods, systems, and schemes can be efficiently implemented in
hardware by fully utilizing the QRO structure of the non-punctured parts of the PCM rows. Asa

result, a flexible trade-off between high throughput and good performance can be obtained.

-12-

WO 2018/141277 PCT/CN2018/075185

Low complexity of the routing network is also achievable by using multiple block processors. In
an embodiment, this is done with several blocks of each non-overlapping group/layer of rows in

parallel.

[84] Quasi row orthogonal structured LDPC code provides a flexible trade-off between
high throughput and good performance for large block size.

[85] In an embodiment, Quasi row orthogonal structure and compact base matrix are
used for LDPC codes in NR.

[86] Lifting method, length and rate adaptation

[87] Shortening, puncturing and lifting method are used for QC LDPC code to implement

length and rate adaptation. In an example, suppose one has an exponent matrix (p; j)mbxnb with

the circulant size Z,,.. Below, an exemplary method for obtaining the (N, K)-code with

codeword size N and information block size K, where 100 < K < 8192 is decribed.

[88] In an aspect, the lifting method described below is used to obtain the lifted version of

the exponent matrix (p’; j)mbx . with the circulant size Z, Z < 512. Such method improves the

n

performance with fine granularity.

[89] Assume Zig = [K/kpl, where k;, = nj, —my,. Weset Z = Z5, + AZ and p';; =
p;;mod 2%, where AZ € {0,1,2,3,2° = Zyyig, 2° — Zopig + 1,28 = Zopig + 2,28 = Zppiy + 3}, s is the
maximal possible integer such that 2° < Z and ¢ is the minimal possible integer such that

Zorig + 4 < 28,

[90] In an aspect, the additional parameter AZ used here is selected based on the
performance of the corresponding matrices in the simulations (SNR needed to obtain
BLER=10"% and BLER=10"*) and can be calculated offline for each Z;,. Thus, in an aspect, it
is only necessary to store no more than 3 - Z,,, bits for these parameters (three bits for each

Zorig)- For example, for the nested family the following table can be used for AZ:

13

WO 2018/141277 PCT/CN2018/075185

AZ index Automatically calculated parameters
Z ig 3 bit
value) AZ Z =12, +AZ s K

2 5 7 9 3 32

3 6 7 10 3 33-48

4 4 4 8 3 49-64

5 3 3 8 3 65-80

6 2 2 8 3 81-96

7 3 3 10 3 97-112

8 3 3 11 3 113-128

512 0 0 512 9 8177-8192
Table 1. Example of offset value and parameters.

[o1] Puncturing and shortening
[92] Once the lifted exponent matrix (p’i j)mbxnb and the circulant size Z are obtained by

the method described above, define the code with codeword size (n, — 2) - Z and information
block size kj, - Z obtained by puncturing the bits corresponding to the first two circulant columns
(see FIG. 3). The parameters are defined as follows: AK =k;,-Z— K andAN = (n, —2)-Z —

N — AK.

[o3] If AN > 0, then further puncture AN redundant bits starting from the end of the
codeword. After applying the puncturing described above, the punctured codeword is obtained.
If AK > 0, then further shortening is performed by zero padding for the last AK bits in the

punctured codeword.
[94] Performance with fine granularity

[95] Figs. 5 and 6 show the simulation results for the length adaption scheme applied to
the nested family of QC LDPC codes.

[96] Fig. 5 is a graph 500 showing performance of an embodiment of a length adaption
scheme, Es/No(dB) at BLER=10"2. The various curves 502, 504, 506, 508, 510, 512, 514, 516
correspond to rates of 1/5, 1/3, 2/5, Y2, 2/3, 34, 5/6, and 8/9 respectively. Each curve 502, 504,
506, 508, 510, 512, 514, 516 is a plot of Es/No(dB) as a function of information length K in bits
at BLER 1072. A BP decoder is used in the evaluation.

14

WO 2018/141277 PCT/CN2018/075185

[97] Fig. 6 is a graph 600 showing of an embodiment of a length adaption scheme,
Es/No(dB) at BLER= 10-4. The various curves 602, 604, 606, 608, 610, 612, 614, 616
correspond to rates of 1/5, 1/3, 2/5, Y2, 2/3, 34, 5/6, and 8/9 respectively. Each curve 602, 604,
606, 608, 610, 612, 614, 616 is a plot of Es/No(dB) as a function of information length K in bits
at BLER 10~*. BP decoder is used in the evaluation.

[98] As can be seen from the Figs. 5 and 6, the disclosed lifting method allows a very
smooth transition from one circulant size to another with no visible catastrophic cases for all

rates and all information block sizes.

[99] The length adaptation scheme described above supports fine granularity and avoids
catastrophic cases for different lengths and rates. It also allows a simple hardware

implementation.

[100] In an aspect, the lifting method described above is used for LDPC codes in NR.

[101] IR-HARQ) and retransmission

[102] Fig. 7 is a diagram of an embodiment of an incremental redundancy hybrid
automatic repeat request (IR-HARQ) 700. IR-HARQ 700 includes punctured bits 702,
information bits 704, and redundant bits 706.

[103] Since the structure of proposed matrix is a combination of 802.11n like matrix and
single extension part, the transmitter can firstly encode the codeword for the lowest code rate
and store it in a circular buffer. According to the desired code rate, a codeword with a certain
length is sent excluding filling bits and the first 2Z information bits. In an aspect, to maintain
good performance of LDPC, each retransmission (e.g., 2", 3", and 4 transmissions in Fig. 7)
should start at or near where the last transmission ends, as shown in Figure 7. Thus, for
example, the 2n transmission starts where the 15t transmission ends. In this manner, IR-HARQ

and rate-matching can be easily achieved.

[104] The disclosed LDPC code with raptor-like structure can support multiple code rates
and IR-HARQ using circular buffer.

[105] This disclosure describes a design of QC LDPC code for eMBB. It is shown that this
design of LDPC code has good performance and supports the fine-granularity rate-matching
scheme for all scenarios of eMBB channel. Quasi row orthogonal structured LDPC code

provides a flexible trade-off between high throughput and good performance for large block size.

15

WO 2018/141277 PCT/CN2018/075185

The length adaptation scheme described above supports fine granularity and avoids catastrophic

cases for different lengths and rates. It also allows a simple hardware implementation.

[106] Figure 8 is a diagram 800 showing a 3 by 6 parity check matrix (PCM), H, 802 and
its corresponding Tanner graph representation 804. An LDPC code is defined by a sparse parity
check matrix (PCM), which is an (N-K) row by N column matrix, where N is the codeword size
(number of bits in a codeword) and K is the information block size of a source word (number of
message bits in each codeword). A Tanner graph 804 is a graphical representation of the parity
check matrix specifying the parity check equations. In the depicted example, the Tanner graph
804 includes three check nodes (CNs) c,, ., and ¢; and six variable nodes (VNS) vy, V,, V3, V4, Vs,
and vs. A Tanner graph consists of N variable nodes (VNs) and M check nodes (CNs). In the
depicted example, the Tanner graph 804 includes three CNs c,, ¢,, and ¢; and six VNs vy, v, Vs,
V4, Vs, and ve. In the Tanner graph 804 shown in Figure 8, the mt check node is connected to
the n variable node if, and only if, the n* element, Ay, in the mt row in the parity check matrix,
H,is 1.

[107] Figure 9 is a diagram 900 showing a 4 by 6 PCM, H, 902 and its corresponding
Tanner graph representation 904. A receiving entity can decode received code words that have
been encoded in accordance with PCM H by applying the PCM H in combination with a
message passing algorithm (MPA). As illustrated in the example of Figure 9, LDPC decoding
with MPA is an iterative decoding algorithm that uses the structure of the Tanner graph 9o4. In
an LDPC decoder, each mt check node (C,, C., C;) is connected to the nth variable node (V,,...,Ve)

if and only if the nt element hy,, in the mt row in the PCM H is 1.

[108] For practical application, PCMs are typically configured as a more structured matrix
rather than a simple collection of binary ones and zeros. For example, a more structured matrix
is used to support a type of LDPC codes referred to as Quasi-Cyclic (QC) LDPC that are
produced by cyclic permutation matrices with column weight 1. In particular, as shown in Fig. 9,
LDPC PCM H can be partitioned into a set of square sub-matrices P; of size ZxZ that are either
cyclic-permutations of an identity matrix P, or null submatrices with all zero entries. The
matrix dimension Z of the QC sub-matrix is referred to as the circulant size and is also known as
a lifting factor. The identity matrix P, has “1” entries on the diagonal from the top left corner to
the bottom right corner and “0”entries everywhere else. An index value i can be used to denote
the cyclic-permutation submatrix P; obtained from the Z x Z identity matrix P, by cyclically
shifting the columns to the right by i elements. By way of example, Fig. 9 illustrates 4 by 6 LDPC

PCM H partitioned into a set of 2 by 2 square submatrices. The submatrix P, is an identity

-16-

WO 2018/141277 PCT/CN2018/075185

matrix, and submatrix P, is obtained by cyclically shifting the columns of submatrix Poto the
right by 1. QC LDPC allows large PCMs to be represented as smaller structured PCMs with each
ZxZ submatrix represented by its index value i in a corresponding cell location of a QC PCM. By
way of example, in Figure 9, the 4 by 6 PCM H can be restated as (and thus generated from) a 2
by 3 QC PCM H. in which each cell includes with an cyclic shift index value or a null value. As
used herein, H may be referred to as a protograph of the code (i.e., protograph matrix).
Converting from H to H. is typically referred to as “edge labeling” or simply “labeling.” Also, as

used herein, H, may be referred to as a labelled protograph or a labelled matrix.

[109] QC LDPC codes are usually decoded by a message passing decoder such as BP, Min-
Sum, and their modifications (NMSA, OMSA, ...). Performance of the QC LDPC code depends
on multiple factors like row and column weight distribution (typically optimized using Density
evolution methods), code distance, amount of short cycles and trapping sets etc. However, prior
art encoding/decoding systems and algorithms and storage of the PCM information consume

large amounts of system resources.

[110] Additionally, to support information length fine granularity and rate adaption,
nested family of the codes may be used, where rate and length adaption is performed by
puncturing (removing) parity bits and shortening (zero-padding) information bits. Accordingly,
simple and powerful lifting method are needed to construct child PCMs from a single parent
PCM.

[111] As noted above, storage and use of QC PCM information can be resource intensive.
Accordingly, embodiments of the present disclosure provide a QC PCM method and system that
allows the same QC PCM information to be adaptively used to support a range of different
information rates and information block sizes K. Accordingly, methods and systems are
disclosed herein that relate to shortening, puncturing and lifting QC LDPC codes. Shortening
means padding information bits with zeros to match exactly the given rate (these bits are not
transmitted but used by both encoder and decoder as zeros). Shortened bits may be padded
from the left, the right side of the information block, or even from somewhere in the middle.
Puncturing means removing some non-needed parity check bits to increase the rate of the code.
This corresponds to cutting the last several columns and the same number of rows from the
PCM.

[112] To support information length fine granularity and rate adaption, nested family of

the codes may be used, where rate and length adaption is performed by puncturing parity bits

1'7

WO 2018/141277 PCT/CN2018/075185

and shortening information bits. Accordingly, simple and powerful lifting methods are

described herein to construct child PCMs from one or several parent PCMs.

[113] Example embodiments are directed to an advanced lifting method that provides one
or more of the following features: (i) high performance for every information block size K with 1
bit granularity; (ii) low hardware complexity; and (iii) need to store only one PCM or a limited
set of PCMs in memory. In some examples, a simple modulo based formula is used for
obtaining child matrix shifts from a parent shift. As a result, a parent PCM can be sued with a
relatively small data table (also referred to herein as a “lifting table”) to support multiple
different circulant sizes Z. The table can be constructed in offline by direct simulation, and may
be tuned for specific decoder, range of rates, lengths and number of iterations. In example
embodiments, modulos may be selected from a limited set of hardware-friendly values like 25 or

n*2s where s and n are natural numbers.

[114] Accordingly, in example embodiments, a data set in the form of a table is generated
that specifies variables that can be used to modify a parent PCM to optimally support different
data rates and information block sizes. In particular, for each rate and information block size K,
a circulant size Z and a modulo M=n*2s selected (using performance simulations in offline) from

the following options:

[115] Options for circulant size Z:

[116] Z=Zmin, Zmin+1,... ZanintAZmax
Where:
AZmax s a positive integer, for example: AZmax=1 O AZmax=2
Znmin= LK /Kb];
K = number of information bits (information block size) and
Kb — # of information columns

[117] Options for n: 7 < {n,,n,,...n:}
Simplest case: n is always 1. Other examples: n e {3.4,5,7}
For each option we set s = | log. (Z/n)]

[118] Options for modulo M:

-18-

WO 2018/141277 PCT/CN2018/075185

M=n*2s, M=n*251 ... M=n*Q2s-Asmax
where Asmaxis 0 or a positive integer, for example: ASmax=1 0T ASmax = O OT ASmax=2
[119] Lifting formula: circulant size: Z, shift = shift,arent mod M
[120] Based on simulations, values n, AZ and As are selected so that:
[121] Z = Zomin + AZ, s = | log. (Z/n)]
[122] M = n*osas

[123] In example embodiments, simulations are done for the specific types of decoder (e.g.
BP, MinSum, LOMS etc.) and a specific number of iterations (e.g. 15) with specific parameters,

and the results are then used to build a lifting table, a representation of which can be as follows:

Table 1: Lifting Table

ZInin AZ. AS n

2 0 1 1

3 1 0 2
[124] The size of the lifting table can be determined as follows:

Size of Table 1: [108.(1+AZmax) | * [10g2(14+ASmay) | * nZ * NN
Where:
- nZis a number of options for different Zmin
- nN is a size of a set {ny,n,,...n:} of options for n
(For example, if AZmnax=1, ASmax=1, AN=1, nZ=100, and nN=1, table size is 2*2*100=400 bits)

[125] Parent PCM design of a rate adaptive code can be done using PEG-based (progressive

edge growth) methods where the following steps are involved:

19

WO 2018/141277 PCT/CN2018/075185

- Finding the column and row weight distribution (for example using DE — density

evolution)

- Finding a protograph using PEG procedure. In an embodiment, the protograph is

a substantially best or preferred protograph.
- Labeling (finding the lifting values for each non-zero circulant)

[126] With respect to Labeling, several options for lifts are explored to find the best or a
preferred one. If it is known in advance that all shifts are from [0..n*25-1], much fewer number

of options need to be explored which makes PCM design more efficient.

[127] A further explanation of shortening, puncturing and lifting methods used for QC
LDPC code to implement length and rate adaptation will now be provided in the context of an

exponent matrix (Pi j)mbxn

with the circulant size Z,,,«x. The following explains how to obtain
b

the (N, K)-code with codeword sizeN and information block sizeK, where for example 100 < K <
8192.

[128] First, the lifting method described below is used to obtain the lifted version of the

exponent matrix(p’; j)mbxnb with the circulant size Z, for example Z < 512. Let Zyin be the

minimal possible circulant size for the given information block size K, i.e. Z;, = [K/kp]1,
where kj, = n;,, —m,;,. Values are set as follows: Set Z = Z;;, + AZ and p’;; = p;; mod 2°,where

AZ € {0,1, 2,3} ands is the maximal possible integer such that 2° < Z.

[129] The additional parameter AZ is selected based on the performance of the
corresponding matrices in simulations (SNR needed to obtain BLER=10"2) and can be done in
offline for each Z,;;,. Thus, the storage required for the adaption parameters is no more than
2Zmax bits for these parameters (two bits for each Z,,;;n). Another example table of offset values

and parameters for AZ is as follows:

20

WO 2018/141277 PCT/CN2018/075185

Table 2: Example of offset value and parameters

Automatically calculated parameters
Zmin A | Z
(2 bit) s K

= Zpin + AZ
7 1 8 3 97-112
8 1 9 3 113-128
9 1 10 3 129-144
10 1 1 3 145-160
11 1 12 3 161-176
12 1 13 3 177-192
13 3 16 4 193-208
512 o) 512 8 8177-8192

[130] Once the lifted exponent matrix (p’i j)mbxnb and the circulant size Z are obtained by

the method described above, the code with codeword size (n;, — 2)Z and information block size
k,Z can be obtained by puncturing the bits corresponding to the first two circulant columns.
Parameters AKand AN can be defined as AK = k,Z — K and AN = (n;, —2)Z — N — AK. If AN > 0,
AN redundant bits can further punctured starting from the end of the codeword. Once the
puncturing described above has been applied and the punctured codeword obtained, if AK >

0 further shortening can be done by zero padding for the first AK bits in the punctured codeword.

[131] In accordance with an embodiment, a generalized lifting method is disclosed that
provides an advanced version of offset-based lifting. One or more disclosed embodiments may
provide for high performance for every information of length K with up to 1 bit granularity.
Additionally, one or more embodiments provide for low hardware complexity where only 1 PCM
is stored in memory. A simple hardware friendly based formula for obtaining a child matrix
shifts from a mother matrix shifts is disclosed. In an embodiment, only one additional small

table is needed for each size of Z. The table may be constructed offline by direct simulation.

-21-

WO 2018/141277 PCT/CN2018/075185

Furthermore, the table may be tuned for a specific decoder, range of rates, lengths, and number

of iterations.

[132] Figure10 is a flowchart of an embodiment of an offset lifting method1000 for
encoding data using a low density parity code. For each rate and information length K, different
options for circulant size, Z, are investigated. Thus, the method1000 begins at block1002 where
a minimal circulant possible circulant size for each rate and information length, K, are
calculated using a fixed subset of options S for circulant size. In an embodiment, the minimal

possible circulant size is calculated as Z,,;; = [K / Kb] where K is a number of information bits

and Kb is a number of information columns. S represents a fixed subset of options for circulant

Size Z = Zyrig-

[133] In an embodiment, S may be a predefined subset of the set §; = {Zm-g, Zorig +
1, ..., Zorig+dZmaxl1, where dZmax1is a positive integer. For example, &Zmax1=1or
dZmaxl = 2 or dZmaxl = 3.

[134] In another embodiment, S may be a predefined subset of the set
S, = {2[“’«"2 (Zorig)] 2[1092(Zorig)] 4 1, ., 2Mt092(Zorig)] 4 dZmaxz}, where dZ,, .. is a positive integer.
For example: dZ 402 = 1 0T dZ g5 = 2 OT dZpgxz = 3.

[135] In some embodiments, set S, is preferable to set S, because Z.:iz may be very close but
greater than some power of 2, but smaller and very far away from another power of 2. For
example, Zoiig — 129 is close to 128 and far from 256. Using set S,, one would need to have quite
a large value of dZmax and a lot of simulations in order to explore Z=256. However, using set S.,

one can immediately “jump” to 256 and can use M=256 as a modulo.

[136] In another embodiment, S may be a predefined subset of the set

Sy = {2[“’«"2 (Zorig)] 2liog2(Zorig)+1], ...,Z[lO«QZ(Zwig)”me]}, where dZ,, .3 is a positive integer. For
example: dZ,,43 = 10T AZpgx3 = 2 OF AZ gz = 3.

[137] In another embodiment, a fixed subset of a union of the above sets S, = 5§, U S, U S
may be considered. For example, e.g., Z may only have a form of n * 25 where n is some positive
integer and s is some non-negative integer. For example, in an embodiment, if n € {3,5,7}, only
the following values for Z are allowed for Z < 25: {1,2,3,4,5,6,8,10,12,14,16,20,24}. The allowed Z
values are limited to those shown previously in this example since other numbers cannot be

represented in a form {3, 5, 7}*2*. For example, 25 is a number that cannot be represented as

-29-

WO 2018/141277 PCT/CN2018/075185

some number times 2%. In this case, an embodiment lifting scheme may select from the
predetermined subset S, ={Z € S; US, US3:Z < Z,yiy & Z = n * 25 for some n and s}. In an
embodiment, for practical efficient implementation, first m (e.g., m = 2, 4, 8) smallest allowed
circulant sizes Z from the set {Z = n * 2°} may be considered. This implies at least two things.
First, instead of looking at offsets such as 1, 2, 3, etc. which may provide “non-allowed” values
for Z, the method iterates only through allowed values of Z which may save computational
resources at the offset lifting table construction step. Second, in an embodiment, an index of
allowed Zs is stored in the offset table rather than the absolute values of delta Z, thereby saving

memory since fewer bits are required for storing indexes as opposed to absolute shifts.

[138] For each rate and information length, K, and for each option of Z € S, a preset of
functions f3, f>, ..., fn is investigated as follows. Thus, at block1004, for each of the plurality of
functions, f;, a non-negative integer shift value is calculated for the child code according to the

formula: hih”d = fi(Mmother Z), Where Ry, iher iS @ Nnon-negative-one shift value of the mother

code (for example, corresponding to the maximal information length K,,q,), and k7, ., is a
resulting shift value of the child code. After that, at block1006, a circulant size, Z, and a function
index, i,, are selected and fixed for the given rate and K using direct simulation for the given
type/class of decoders, target bit or block error rate ER;, decoding parameters, etc. In
embodiment, the circulant size, Z, and the function index, i., are selected according to the

following formula:
(Zpests Jpest) = ArgMin(zes j=1,..n) (SNR@ERt for the given Z and fj)

[139] At block1008, the resulting pair (i, i») is stored in an offset table, T, where i, is an

index of Z, .;; in a set of possible options S for Z.

[140] It should be noted that the simulation data is specific to the selected LDPC code. If a

different LDPC code is utilized, then different simulation data is generated and used.

[141] One should also note that some non-zero circulants of the mother code may be fixed
so that the above described lifting scheme is not applied to them and their shift values are left

unchanged. Table 3 below shows an example of such fixed positions.

23

WO 2018/141277 PCT/CN2018/075185

Table 3

i = s 8 § § & &8 &8 § 8 8 &
373 3}4?9 198 218 12 7 133 260 307 141 306 418 337
| 58 235 30 182 21 460 365 113 201 420 307 471
I I T R I I L T T L T L
-1 -1t -1 -1 -1 -1 -1 -1 -1 -1 -1 -1
-1

75 273)

1//

Fixed circulants

[142] Thus, in an embodiment, offset table, T, contains the following entries shown in
Table 4.
Table 4
Zorig= K /Kb] ih=1,2,..,]|S| i=1,2,..,n
Zmin 1 3
Zmax 2 4
[143] Here, | S| denotes the size of set S.

[144] Table 4 is an alternate embodiment of a lifting table as compared to table 2. Table 4
includes a column corresponding to Zorig, a column representing with the index of Z,,.; in a set
of possible options S for Z, and a column providing the lifting function index. Table 4 is in
contrast to table 2 in which the actual offsets are stored in the lifting table rather than indices.
Furthermore, table 2 only uses a single lifting function. Therefore, there is no need for a lifting

function index in table 2.

[145] Another embodiment of a lifting table is provided in table 5 below.

24

WO 2018/141277 PCT/CN2018/075185

[146] Table 5. Example of offset value and parameters.
AZ index Automatically calculated parameters
Zyig (3 Dit
value) AZ Z=1Z,4+AZ s K

2 5 7 9 3 32

3 6 7 10 3 33-48

4 4 4 8 3 49-64

5 3 3 8 3 65-80

6 2 2 8 3 81-96

7 3 3 10 3 97-112

8 3 3 11 3 113-128

512 0 0 512 9 8177-8192

[147] The lifting tables may store an index corresponding to an absolute value for AZ (i.e.,

the circulant size offset) or may store the actual values for AZ. In some embodiments, it may be

beneficial to store the index rather than the actual AZ to save memory.

[148] It should be noted that blocks 304, 306, and 308 in method 300 shown in Figure 3
may be performed for each coding rate independently. In such case, each given rate, R, will have

a separate table, Tr.

[149] In another embodiment, table T may be selected as a result of direct simulations for
all rates and, therefore, will not depend on rate. For example, the following cost functions may

be used for this purpose:

_ (Z

best’

- (Z)= Arngn(Z

i
best’ 2best

i2b t) = ArgMin(Z) n)(sumR{SNR@{R,ERt} for the given Z and f 1,2})

=S, i2=

) n)(maxR{SNRloss@{R,ERt} for given Z and f 1,2})

=S, i2=

Here, SNR@{R,ERt} denotes an SNR threshold in order to reach the target error rate ERt for
the given rate R, and SNRloss means such SNR threshold difference with some other (reference)

solution. In an embodiment, sum_ is a weighted sum since some rates may be more important
than others. In an embodiment, max may be replaced by a sum or a weighted sum. The

threshold difference may be in a form max(0, SNR — SNRreference) because in an embodiment
negative loss is considered as 0 (i.e., no) loss. Thus, in an embodiment, only the positive loss is

minimized.

25

WO 2018/141277 PCT/CN2018/075185

[150] Method 300 describes the most general case of the offset lifting method. Ina
practical implementation, functions f,, f.,..., f, may be selected to be hardware implementation

friendly. Example embodiments that describe such functions are the following.

[151] It should be noted that both the encoder and the decoder generate a child PCM from
the mother PCM by changing the mother shift table (typically stored in an interleaved way which
is called “decoding schedule”). This is done using an offset lifting table as shown above and a
lifting formula.

[152] Example A. Let mother code shift values be limited by a maximal circulant size
Zimax: Nmother < Zmax. Let k is a number of bits sufficient to store mother shift values, i.e. k=
[10g2(Zmax) |. Let Z is a circulant size for the child code defined according to the above explained
Step 1 and s is a number of bits which is sufficient to store shift values for the child code, i.e. s=
[log.(Z)]. Then functions fi, f.,..., f. may be defined as numbers obtained by selecting all or some
fixed s bits from k bits of the mother shift value. For example, let Zmax = 32 and Z=16. In this
case k=log,(32) = 5 and s=log,(16)=4. Then, example A provides the following n=5 functions (or
a subset of this set):

h =bbbbb

mother 3 2 1 0

fth ,16)=b b b b

mother 3 2 1 0

fth ,16)=b bbb

2 mother 4 2 1 0
f (h ,b16)=b b b b
3 mother 4 3 1 0
f (h ,16)=b b b b
4 mother 4 3 2 o0
f(h ,16)=b b b b
5 mother 4 3 2 1

One should note that from hardware implementation point of view, scheme A is very simple as it
just needs extraction of the given set of s bits from a bigger number of k bits stored in memory

or on registers.

[153] Example B. Example lifting scheme B is a generalization of Example lifting scheme
A. Let mother code shift values are again limited by a maximal circulant size Zmax: hmother < Zmax
and k is a number of bits sufficient to store mother shift values, i.e. k=[10g.(Zmax) . LetZ be a
circulant size for the child code and s=[log.(Z) |. Then each function f,,fs,...,f, may be defined

using the following sub-steps:

o ®
(1) Select some s <=k bits at fixed positionsp ,p ,...p
1 1 2

s1

-26-

WO 2018/141277 PCT/CN2018/075185

@ @ (2
(2) Select some s <=k bits at fixed positionsp ,p ,...p
2 1 2

s2

@ ()
(r) Select some s <=k bits at fixed positionsp ,p ,...p
T 1 2

(r+1) Sum up the integers obtained at steps (1)-(r)

(r+2) Optionally, select some s bits from the sum in (r+1)

[154] For example, let again Zmax = 32 and Z=16. In this case k=log.(32) = 5 and
s=log,(16)=4. Then, in this example for scheme B the following functions may be used as f; and
fo:

h =bbbbb

mother 4 3 2 1 0

f(h ,16)=bbb +bbbb
1 mother 4 3 2 4 3 2 1
fh ,16)=bb +bbb

2 mother 4 3 4 3 2

[155] It is easily observed that f, and f, implement the following functions: f(h,16)=
| 3*h/4]and f.(h,16)=[3*h/8]. One should note that from hardware implementation point of
view, scheme B is also very simple as it needs several extractions of the given set of bits from a

larger number of k bits stored in memory or on registers, and then summing up these numbers.

[156] Example C. Example lifting scheme C is a narrow variant of Example lifting
scheme A. Let mother code shift values are limited by hmother < Zmax and k is a number of bits
sufficient to store mother shift values, i.e. k= [10g.(Zmax) |. Let Z be a circulant size for the child
code and s=[1log,(Z)]. Then each function f,,f.,...,fa may be defined as taking s (or less) adjacent
bits from the mother shift, i.e. if hmother=Dbk-1Dx-2 ... b1 bo, then:
. fl(hmot
- f2(hm0

,Z)=b b ..b ,
her k-1 k-2

k-s

,Z)=b b ..b ,
her k-2 k-3

t k-s-1

. f (h Z)=b b ..Db,orasubset of this set.

2
k-s+2 mother s-2 §-2

[157] One should note that each fi(hmother, Z) = bk-ibi-i-1 ... br-si+1, actually calculates the

following function: fi(hmother, Z)=| hmother/ 25+ mod 2°.

[158] Example D. Example lifting scheme D is a special case of Example lifting scheme C.
Let mother code shift values are limited by hmother < Zmax and k is a number of bits sufficient to

store mother shift values, i.e. k=[log.(Zma) |. Let Z be a circulant size for the child code and s=

27

WO 2018/141277 PCT/CN2018/075185

[log.(Z)]. Then each function f,,f.,...,f. may be defined as taking s or smaller number of least

significant bits from the mother shift, i.e. if hmother=bk-1bx-5 ... b1 bo, then:

fl(h ,Z)=Db b ...bo,

mother s-1 §-2

fh ,Z)=b b ..b,

mother -2 $-3 0

. f (h ,Z)=Db ,orasubset of this set.

s mother

[159] One should note that each fi(hmomer, Z) actually calculates the modulo of the mother

[160] Example E. Example lifting scheme E is a special case of Example lifting scheme C.
Let mother code shift values are limited by hmother < Zmax and k is a number of bits sufficient to
store mother shift values, i.e. k=[log.(Zmax) |. Let Z be a circulant size for the child code and s=
[log.(Z)]. Then each function f,,f.,...,f. may be defined as taking s or smaller number of most

significant bits from the mother shift, i.e. if hmother=bk-1bk-5 ... by bo, then:

,Z)=b b ..b ,
k-1 k-2

= f(h
1 mother k-s

. f2(hmo her’ Z) - bk—lbk—2 b ’

k-s+1
| |

. f (h ,Z) = bk_ , or a subset of this set.

s mother

tl

[161] One should note that each fi(hmoter, Z) actually calculates the floor of the mother

offset over a power of 2: fi(hmother, Z) = | hmother / 255+,
[162] Example F. Let again s= [log.(Z) |. The following lifting function f may be used:

Romother Mod 2571 if (R prner mod 25) = z,

Potners2) = | .
[163] f(mother Z) hmother mod 25; if (hmother mod 25) <z

[164] In the above formula mod is just an example of a bit operation, any other above listed
functions fi may be used instead.
[165] Encoding for LDPC matrix with lower-triangular extension

[166] Following is a description of an embodiment of an encoding procedure for LDPC
matrix with lower-triangular extension shown on Fig. 11 of the base matrix H, 1102. For other
types of matrices a similar approach can be used. First of all the lifting method is applied and

for each circulant the corresponding shift value is calculated.

-28-

WO 2018/141277 PCT/CN2018/075185

[167] Submatrices (H,, H,, H,, ...) of this parity-check matrix can be used to construct LDPC
codes of different rates. The base matrix 1102 has the highest rate of all codes from family. For
each parity-check matrix H; of family it contains a lower triangular extension 1200 as shown in
Fig. 12 such that all matrices H;,j < i of rates higher than H as shown in Fig. 11. Because of
lower-triangular structure, additional parity bits for code C;,, can be easily calculated from

codeword of C;. If we have codeword w; € C; (i.e. H;w; = 0), and matrix H; has lower-triangular
] H 0 A . .
extension H;,; = [Ll L] 1200 as shown in Fig. 12, then additional bits w’ can be calculated
p

from equation L,w' + Lw = 0. Matrix L is sparse and L,, is sparse and lower-triangular. So, first
we need to calculate s = Lw by multiplication w by sparse matrix L, then we need to solve linear
system L,w' = s with lower-triangular sparse matrix L, . Both operations may be done efficiently.
Total complexity of calculation of w’ is proportional to total number of non-zero elements of
matrix [L Lp]. The most used type of lower-triangular extension is raptor-like extension for

which L, = I.

[168] Fig. 13 is a diagram showing an embodiment of an IRA LDPC parity-check matrix
structure 1300. In an aspect, the base matrix H, has the dual-diagonal structure (also called IRA
structure) in section 1306. Efficient encoding for this matrix is possible working directly on its

parity-check matrix, due to its particular IRA structure shown in Fig. 13.

[169] In the table 1400 depicted in Fig. 14, one can see an example of a QC matrix with IRA
structure. It is the exponent matrix of the IEEE802.16-2009 LDPC code with codeword length n
= 2304, R = V2 and the circulant size 96.

[170] In an aspect, one can describe an efficient encoding method for IRA QC LDPC codes.
Suppose that this matrix is specified by its ¢ x t exponent matrix with circulant size b such as
shown above. Note that in such a matrix the column of index ¢t — ¢ = k/b of all exponent
matrices, i.e., the column associated with coded bits x:_cy» = Po, .+ » X(t—c+1)p—1 = Pp—1, has
exactly three non-negative elements, two of which are identical and one being unpaired. Next,
the row index of this unpaired element is denoted by é. Encoding may then be efficiently

performed as follows.

[171] Let the vector containing the information symbols be u = [ug, U4, ... ,us__1], where
for 0 < j <t — ¢ — 1 vector u; contains the b information bits associated with the j th column of

the exponent matrix, i.e., u; = [W, ... , U¢j+1)p—1]- Similarly, let the vector containing the parity

29

WO 2018/141277 PCT/CN2018/075185

bits be p = [pyg, ... , Pc—1], where for 0 < i < ¢ — 1 vector p; contains the b parity bits associated

with the (t — ¢ + i)th column of the exponent matrix, i.e., p; = [Pip, ... , Piv1)p-1]-

[172] The b parity bits forming p, are computed based on the b parity-check equations
corresponding to the row of the exponent matrix including the unpaired non-negative element
of its (t — c)th column. In fact, letting P; ; be the square b X b matrix representing the expansion

of element (i,) in the exponent matrix, summing over all the parity-check equations yields

c—1t-c-1

Per_cpo = Z z Piju;

=0 j=0
and therefore

bo = (Pf,t—c)_l Zlcz—& 5;8_1 Pi,j u;.

Note that multiplication by each P, ; as well as by (P;._.)~" simply represents a cyclic shift (the
inverse of a circulant permutation matrix is itself a circulant permutation matrix). Once the
elements of vector p, are known, for i = 0, ..., ¢ — 2 the elements of vector p;,; may be calculated
aSPiy1 = Piyre—cPo + i + zg;g—l Py,4,j u;, where again all multiplications may be efficiently

implemented as cyclic shifts, and where in the summation the term p; is not present ifi = 0.

[173] It is easy to see that the described above scheme can be also used for matrices with
similar to IRA structure. For example for the matrix 1500 shown in Fig. 15, one can also use a

similar encoding method.

[174] Fig. 16 is a block diagram of an embodiment of a LPDC encoder 1600. LPDC encoder
1600 includes read-only memory 1602 where a mother PCM 1606 and a lifting table 1608 are
stored. The LPDC encoder 1600 also includes an encoder component 1604 that includes I/O0
memory 1610 and a parity bit processor/generator 1612. The encoder1600 receives a K-bit input
source word and generates an N-bit output code word. The I/O memory 1610 stores the input
K-bit information word and is used by the encoder 1604 to generate the K-bit output. The read-
only memory 1602 stores mother code circulant shift values stored in the mother PCM 1606 and
the lifting table 1608. In an embodiment, the lifting functions are implemented in hardware and
are not stored in memory. The lifting table 1608 includes indices of circulant size offsets and /or
indices corresponding to the allowed circulant sizes and indices corresponding to a lifting
function to be used. The parity bit processor/generator 1612 generates an N-bit output code

word according to the K-bit input using appropriate LDPC encoding method, using the child

30

WO 2018/141277 PCT/CN2018/075185

PCM generated on the fly from the mother PCM 1606 (or a generator matrix corresponding to
this child PCM). This child PCM generation is done by producing offset values of the child code,
for each non-zero circulant of the mother PCM 1606, by selecting one of the circulant size offset
values and/or allowed circulant size, and using this circulant offset and one of the lifting
functions or a set of functions corresponding to selected indices in the lifting table that are
appropriate for the given size, K, of the input. The N-bit output is then stored in the I/O
memory 1610.

[175] Figure 17 is a block diagram of an embodiment of a LPDC decoder 1700. The LPDC
decoder 1700 includes a read-only memory 1702 for storing mother PCM 1706 and the lifting
table 1708, and a decoder component 1704 that includes I/O memory 1710 and a check node
processor 1712. The decoder 1700 receives an input LLR (log likelihood ratio) sequence of
length N and generates a K-bit output. The read-only memory 1702 stores circulant shift values
of the mother PCM 1706 and the lifting table 1708. The lifting table 1708 includes indices of
circulant size offsets and /or allowed circulant sizes, and indices corresponding to a lifting
function. The I/O memory 1710 stores the input vector of length N of LLR values and is used by
the check node processor 1712 to generate the K-bit output. The K-bit output is then stored in
the I/O memory 1710. The check node processor 1712 generates a K-bit output information bit
sequence according to the received N-component input, using a child PCM generated on the fly
from the mother PCM 1706 by producing, for each non-zero circulant of the mother PCM 1706,
shift values of the child code from the mother code shift value by selecting one of the circulant
offset values and/or allowed circulant size and applying to it a lifting function or functions

corresponding to selected indices in the lifting table 1708.

[176] Figure 18 is a flowchart of an embodiment of a method 1800 for encoding data using
LDPC, the disclosed lifting tables, and the disclosed lifting functions. The method1800 includes
receiving a K-bit source word. The K-bit source word is encoded by an LPDC coder to produce
an N-bit code word using the disclosed lifting table and lifting functions. The encoder then
transmits the N-bit code word. It should be noted that LDPC codes having a parity-check matrix

.., of a particular structure such as, for example, a parity-check matrix ., having a parity

part of dual diagonal structure allows the encoding of the information sequence IS, using (only)

the parity-check matrix H, so that obtaining the generator matrix G may not be required
(cf. T. J. Richardson and R. L. Urbanke, “Efficient encoding of low-density parity-check codes”,
IEEE TRANSACTIONS ON INFORMATION THEORY, Volume 47, Issue 2, Pages 638—-656,

31

WO 2018/141277 PCT/CN2018/075185

August 2002, the contents of which are incorporated herein by reference as if reproduced in its
entirety).

[177] Figure 19 is a flowchart of an embodiment of a method1900 for decoding data using
LDPC, the disclosed lifting tables, and the disclosed lifting functions. The method 1900 includes
receiving a K-bit source word. The N-bit code word is decoded by an LPDC coder to produce an
K-bit source word using the disclosed lifting table and lifting functions. The decoder then stores
the K-bit source word. The decoder uses the redundancy in the received information sequence
in a decoding operation performed by the decoder to correct errors in the received information
sequence and produce a decoded information sequence (cf. M. P. C. Fossorier et al., “Reduced
Complexity Iterative Decoding of Low-Density Parity Check Codes Based on Belief Propagation”,
IEEE TRANSACTIONS ON COMMUNICATIONS, May 1999, Volume 47, Number 5, Pages 673-
680, and J. Chen et al., “Improved min-sum decoding algorithms for irregular LDPC codes”,
PROCEEDINGS OF THE 2005 IEEE INTERNATIONAL SYMPOSIUM ON INFORMATION
THEORY, Pages 449-453, September 2005). The decoded information sequence is an estimate
of the encoded information sequence from which (an estimate of) the information sequence can

be extracted.

[178] Figure 20 illustrates a block diagram of an embodiment processing system2000 for
performing methods described herein, which may be installed in a host device. As shown, the
processing system 2000 includes a processor2004, a memory2006, and interfaces 2010-2014,
which may (or may not) be arranged as shown in Fig. 20. The processor 2004 may be any
component or collection of components adapted to perform computations and/or other
processing related tasks, and the memory 2006 may be any component or collection of
components adapted to store programming and/or instructions for execution by the processor
2004. In an embodiment, the memory 2006 includes a non-transitory computer readable
medium. The interfaces 2010, 2012, 2014 may be any component or collection of components
that allow the processing system 2000 to communicate with other devices/components and/or a
user. For example, one or more of the interfaces 2010, 2012, 2014 may be adapted to
communicate data, control, or management messages from the processor2004 to applications
installed on the host device and/or a remote device. As another example, one or more of the
interfaces 2010, 2012, 2014 may be adapted to allow a user or user device (e.g., personal
computer (PC), etc.) to interact/communicate with the processing system 2000. The processing
system2000 may include additional components not depicted in Fig. 20, such as long term

storage (e.g., non-volatile memory, etc.).

32

WO 2018/141277 PCT/CN2018/075185

[179] In some embodiments, the processing system2000 is included in a network device
that is accessing, or part otherwise of, a telecommunications network. In one example, the
processing system 2000 is in a network-side device in a wireless or wireline telecommunications
network, such as a base station, a relay station, a scheduler, a controller, a gateway, a router, an
applications server, or any other device in the telecommunications network. In other
embodiments, the processing system 2000 is in a user-side device accessing a wireless or
wireline telecommunications network, such as a mobile station, a user equipment (UE), a
personal computer (PC), a tablet, a wearable communications device (e.g., a smartwatch, etc.),

or any other device adapted to access a telecommunications network.

[180] In some embodiments, one or more of the interfaces 2010, 2012, 2014 connects the
processing system 2000 to a transceiver adapted to transmit and receive signaling over the

telecommunications network.

[181] Figure 21 illustrates a block diagram of a transceiver 2100 adapted to transmit and
receive signaling over a telecommunications network. The transceiver 2100 may be installed in
a host device. As shown, the transceiver 2100 includes a network-side interface 2102, a coupler
2104, a transmitter 2106, a receiver 2108, a signal processor 2110, and a device-side interface
2112. The network-side interface 2102 may include any component or collection of components
adapted to transmit or receive signaling over a wireless or wireline telecommunications network.
The coupler 2104 may include any component or collection of components adapted to facilitate
bi-directional communication over the network-side interface 2102. The transmitter 2106 may
include any component or collection of components (e.g., up-converter, power amplifier, etc.)
adapted to convert a baseband signal into a modulated carrier signal suitable for transmission
over the network-side interface 2102. The receiver 2108 may include any component or
collection of components (e.g., down-converter, low noise amplifier, etc.) adapted to convert a
carrier signal received over the network-side interface 2102 into a baseband signal. The signal
processor 2110 may include any component or collection of components adapted to convert a
baseband signal into a data signal suitable for communication over the device-side interface(s)
2112, or vice-versa. The device-side interface(s) 2112 may include any component or collection
of components adapted to communicate data-signals between the signal processor 2110 and
components within the host device (e.g., the processing system 2000, local area network (LAN)

ports, etc.).

[182] The transceiver 2100 may transmit and receive signaling over any type of

communications medium. In some embodiments, the transceiver 2100 transmits and receives

33

WO 2018/141277 PCT/CN2018/075185

signaling over a wireless medium. For example, the transceiver 2100 may be a wireless
transceiver adapted to communicate in accordance with a wireless telecommunications protocol,
such as a cellular protocol (e.g., long-term evolution (LTE), etc.), a wireless local area network
(WLAN) protocol (e.g., Wi-Fi, etc.), or any other type of wireless protocol (e.g., Bluetooth, near
field communication (NFC), etc.). In such embodiments, the network-side interface 2102
includes one or more antenna/radiating elements. For example, the network-side interface

2102 may include a single antenna, multiple separate antennas, or a multi-antenna array
configured for multi-layer communication, e.g., single input multiple output (SIMO), multiple
input single output (MISO), multiple input multiple output (MIMO), etc. In other embodiments,
the transceiver 2100 transmits and receives signaling over a wireline medium, e.g., twisted-pair
cable, coaxial cable, optical fiber, etc. Specific processing systems and/or transceivers may
utilize all of the components shown, or only a subset of the components, and levels of

integration may vary from device to device.

[183] Figure 22 illustrates an embodiment network 2200 for communicating data in which
the disclosed methods and systems may be implemented. The network 2200 includes a
plurality of network components. The network components may include an access point (AP), a
station (STA) (e.g., a wireless device or user equipment (UE) such as a wireless phone, etc.), or
any other wireless reception point. In an embodiment, the network 2200 includes an access
point (AP) 2210 having a coverage area 2212, a plurality of STAs 2220, and a backhaul network
2230. In an embodiment, the AP may be implemented as transceiver 2100 shown in Fig. 21. In
an embodiment, the STAs 2220 may be implemented as, for example, processing system 2000
shown in Fig. 20. As used herein, the term AP may also be referred to as a transmission point
(TP) and the two terms may be used interchangeably throughout this disclosure. In various
embodiments, the AP 2210 may be a base station (BS) also referred to as a base transceiver
station (BTS). Examples of a BS include an e Node B (eNB), a gNB, and the like. In an
embodiment, the AP 2210 may be a wireless router. Thus, the AP 2210 may include any
component capable of providing wireless access by, inter alia, establishing uplink (dashed line)
and/or downlink (dotted line) connections with the STAs 2220. The STAs 2220 may include
any component capable of establishing a wireless connection with the AP 2210. Examples of
STAs 2220 include mobile phones, tablet computers, and laptop computers. The backhaul
network 2230 may be any component or collection of components that allow data to be
exchanged between the AP 2210 and a remote end (not shown). In some embodiments, the

network 2200 may include various other wireless devices, such as relays, femtocells, etc.

34

WO 2018/141277 PCT/CN2018/075185

[184] It should be appreciated that one or more steps of the embodiment methods
provided herein may be performed by corresponding units or modules. For example, a signal
may be transmitted by a transmitting unit or a transmitting module. A signal may be received
by a receiving unit or a receiving module. A signal may be processed by a processing unit or a
processing module. Other steps may be performed by an iterating unit/module, a difference
unit/module, an adjustment unit/module, a generating unit/module, a calculating unit/module,
an assigning unit/module, an incrementing unit/module, a decrementing unit/module, and/or a
setting unit/module. The respective units/modules may be hardware, software, or a
combination thereof. For instance, one or more of the units/modules may be an integrated
circuit, such as field programmable gate arrays (FPGAs) or application-specific integrated
circuits (ASICs).

[185] In an embodiment, a method for lifting a child code from one or more mother codes
for encoding data includes calculating a plurality of shifts for a child code using a fixed set of a
plurality of lifting functions and a fixed set of allowed circulant size offsets and/or circulant sizes.
The method also includes determining a combination of circulant size and lifting function
according to a direct simulation, an information length, a code rate, and a decoder. The method
also includes storing a circulant size offset and/or circulant size index and a lifting function
index corresponding to the determined combination of circulant offset and/or size and lifting
function in a lifting table. The circulant offset and/or size index and the lifting function index

are used to encode and decode data.

[186] In an embodiment, a network component configured for decoding data includes a
processor and a computer readable storage medium storing programming for execution by the
processor. The programming includes instructions for calculating a plurality of shifts for a child
code using a fixed set of a plurality of lifting functions and a fixed set of allowed circulant sizes.
The programming also includes instructions for determining a combination of circulant size and
lifting function according to a direct simulation, an information length, a code rate, and a
decoder. The programming also includes instructions for storing a circulant size index and a
lifting function index corresponding to the determined combination of circulant size and lifting
function in a lifting table, the circulant size index and the lifting function index used to encode
and decode data.

[187] In an embodiment, a non-transitory computer-readable medium storing computer
instructions for decoding data, that when executed by one or more processors, cause the one or

more processors to perform a plurality of steps. The steps include calculating a plurality of

35

WO 2018/141277 PCT/CN2018/075185

shifts for a child code using a fixed set of a plurality of lifting functions and a fixed set of allowed
circulant sizes. The steps also include determining a combination of circulant size and lifting
function according to a direct simulation, an information length, a code rate, and a decoder. The
steps also include storing a circulant size index and a lifting function index corresponding to the
determined combination of circulant size and lifting function in a lifting table, the circulant size

index and the lifting function index used to encode and decode data.

[188] In an embodiment, a network component includes a read only memory comprising at
least a parity portion of a mother PCM and a lifting table. The network component also includes
a parity bit generator configured to generate parity bits from a source word according to a child
code. The child code is determined from the lifting table and the at least a parity portion of the
mother PCM. The lifting table includes a combination of circulant size and lifting function

according to an information length, a code rate, and a decoder.

[189] In an embodiment, a network component includes a read only memory comprising at
least a parity portion of a mother PCM and a lifting table. The network component also includes
an input/output memory. The network component also includes a check node processor
configured to receive a N-bit code word and determine a K-bit source word according to a child
code and store the k=bit source word in the input/output memory. The child code is determined
from the lifting table and the at least a parity portion of the mother PCM. The lifting table
includes a combination of circulant size and lifting function according to an information length,

a code rate, and a decoder.

[190] In an embodiment, a method for encoding data includes receiving a K-bit source
word input. The method also includes encoding the K-bit source word input according to a
LDPC code, a lifting function, and a circulant size offset to generate an N-bit code word output.
The circulant size and lifting function are determined according to an information length, a code
rate, and a decoder. The method also includes storing the N-bit code word output in

input/output memory.

[191] In an embodiment, a method for decoding data includes receiving an N-bit code

word input. The method also includes decoding the N-bit code word input according to a LDPC
code, a lifting function, and a circulant size offset to generate an K-bit source word output. The
circulant size and lifting function are determined according to an information length, a code rate,
and a decoder. The method also includes storing the K-bit source word output in input/output

memory.

WO 2018/141277 PCT/CN2018/075185

[192] In any of the preceding aspects, the parity bit generator is further configured to
receive a K-bit source word and determine an N-bit code word according to the mother PCM
and the lifting table.

[193] In any of the preceding aspects, shifts of non-zero circulants for predefined positions
are unchanged.
[194] In any of the preceding aspects, the lifting table is shared by at least some the one or

more mother codes obtained by puncturing parity bits to change the rate of the code.

[195] In any of the preceding aspects, the lifting functions for defining child shifts from the
mother shift are defined as selecting the given number of bits from the binary representation of

the mother shift at some predefined positions.

[196] In any of the preceding aspects, the lifting functions for defining child shifts from the
mother shift are defined by selecting the given number of bits from the binary representation of
the mother shift at some predefined positions; and selecting the given number of bits from the

binary representation of the mother shift at some other predefined positions.

[197] In any of the preceding aspects, the method further includes repeating the selecting
the given number of bits from the binary representation of the mother shift at some other

predefined positions several times.

[198] In any of the preceding aspects, each iteration of the selecting the given number of
bits from the binary representation of the mother shift at some other predefined positions

several times comprises a substep and further comprising summing results of each such substep.

[199] In any of the preceding aspects, the method also includes selecting the given number
of bits from the binary representation of the result of the summing at some other predefined

positions.

[200] In any of the preceding aspects, the lifting functions for defining child shifts from the
mother shift select a fixed number of adjacent bits from a binary representation of the mother

shift value.

[201] In any of the preceding aspects, the lifting functions for defining child shifts from the
mother shift select the fixed number of most significant bits from the binary representation of

the mother shift value.

37

WO 2018/141277 PCT/CN2018/075185

[202] In any of the preceding aspects, the lifting functions for defining child shifts from the
mother shift select the fixed number of least significant bits from the binary representation of

the mother shift value.

[203] In any of the preceding aspects, the lifting function firstly selects s bits from the
mother shift value at the predefined s bit positions, wherein s corresponds to the minimal power
of 2 greater than equal to circulant size Z (i.e. s = [log,(Z)]), and secondly if this value appears
to be greater or equal to Z, selects s-1 bits from the mother shifts at some other predefined s-1

positions.

[204] In any of the preceding aspects, the lifting function firstly selects s least significant
bits from the mother shift value, and secondly if this value appears to be greater or equal to Z, it

selects s-1 least significant bits from the mother shifts.

[205] In any of the preceding aspects, the circulant size is selected from one of Zoig, Zorig+1,
Zorig+2, ... , Zorig+dZmaxi, Wherein Zqig is a minimal possible circulant size to encode the given

number of information bits and dZmax is a positive integer.

[206] In any of the preceding aspects, the circulant size is selected from one of Zorg,
GP2(Zorig+1), GP2(Zorig+1)+1, GP2(Zorig+1)+2, ..., GP2(Zorig+1)+dZmaxo, wherein Zosig is a minimal
possible circulant size to encode the given number of information bits, and wherein GP2(A) is a

minimal power of 2 greater or equal to A and dZmax is a positive integer.

[207] In any of the preceding aspects, the circulant size is selected from one of Zorg,
GP2(Zorig+1), GP2(Zorig+1)*2, GP2(Zorig+1)*4, ... GP2(Zorig+1)*2” AZmaxs, WhereinZoig is a minimal
possible circulant size to encode the given number of information bits, and wherein dZmax; is a

positive integer.

[208] In any of the preceding aspects, the circulant size is selected from one of Zoig, Zorig+1,
Zorigt2, ... , Ziorig+dZmaxi, GP2(Zorig+dZmaxi+1), GP2(ZorigtdZmaxi+1)+1, GP2(Zorig+dZmaxi+1)+2, ...,
and GP2(Zorig+dZmaxi+1)+dZmaxo}, WhereinZoig is a minimal possible circulant size to encode the
given number of information bits, wherein GP2(A) is a minimal power of 2 greater or equal to A,

and wherein dZmax and dZmax. are positive integers.

[209] In any of the preceding aspects, the circulant size is selected from one of Zoig, Zorig+1,
Zorig+2, ceey Zorig+dZmax1, GP2(Zorig+dZmax1+1)*2, GP2(Zorig+dZmax1+1)*4, ceey
GP2(ZorigtdZmaxi+1)*2” dZmax3, Wwherein Zaig is @ minimal possible circulant size to encode the
given number of information bits, wherein GP2(A) is a minimal power of 2 greater or equal to A,

and wherein dZmax and dZmax; are positive integers.

38

WO 2018/141277 PCT/CN2018/075185

[210] In any of the preceding aspects, the circulant size is selected from one of Zoig, Zorig+1,
Zorigt2, ...y ZorigtQZmaxi, GP2(Zorig+AZmaxi+1), GP2(ZorigtdZmaxi+1)+1, GP2(Zosig+dZmaxa+1)+2, ...,
GP2(Zorig+dZmaxi+1)+AZmaxz2, GP2(ZorigtdZmaxi+1)*2, GP2(Zorig+dZmaxi+1)*4, ...,
GP2(Zorig+dZmaxi+1)*2" dZmax3, whereinZaig is a minimal possible circulant size to encode the
given number of information bits, wherein GP2(A) is a minimal power of 2 greater or equal to A,

and wherein dZmaxi, dZmaxs, and dZmax; are positive integers.

[211] In any of the preceding aspects, circulant size, Z, is limited by a set of allowed values
such that Z is in a form n*2”s where n is a positive integer from a fixed set of integers and s is a
non-negative integer, such that the options for Z are first 2 or more smallest numbers that have
a form of n*2”s and are greater or equal to Z.ig, Wwherein Zqig is a minimal possible circulant size

to encode the given number of information bits.

[212] In any of the preceding aspects, the circulant size is selected from one of Zoig, Zorig+1,
Zorig+2, and Zorig+3, wherein Z,g is a minimal possible circulant size to encode the given number

of information bits.

[213] In any of the preceding aspects, the circulant size is selected from one of Zuiz and
Zorig+1, wherein Zorig is @ minimal possible circulant size to encode the given number of

information bits.

[214] In any of the preceding aspects, the circulant size is selected from one of Zorg,
GP2(Zorig+1), GP2(Zorig+1)+1, GP2(Zorig+1)+2, ..., GP2(Zorig+1)+6, wherein Zo.is is a minimal
possible circulant size to encode the given number of information bits, and wherein GP2(A) is a

minimal power of 2 greater than or equal to A.

[215] In any of the preceding aspects, the circulant size is selected from one of Zorg,
GP2(Zorig+1), GP2(Zorig+1)+1, GP2(Zorig+1)+2, GP2(Zorig+1)+3, wherein Zoyig is a minimal possible

circulant size to encode the given number of information bits.

[216] In any of the preceding aspects, the circulant size is selected from one of Zuiz and
GP2(Zorig+1), wherein Zoig is a minimal possible circulant size to encode the given number of

information bits.

[217] In any of the preceding aspects, the circulant size is selected from one of Zosig, Zorig+1,
Zorig+2, Zorigt3, GP2(Zorig+1), GP2(Zorig+1)+1, GP2(Zorig+1)+2, and GP2(Zorig+1)+3.

[218] In any of the preceding aspects, the circulant size is selected from one of Zosig, Zorig+1,
Zorig+2, Zorigt3, GP2(Zorig+4), GP2(Zorig+4)+1, GP2(Zorig+4)+2, GP2(Zorig+4)+3.

39

WO 2018/141277 PCT/CN2018/075185

[219] In any of the preceding aspects, the circulant size is selected from one of Zosig, Zorig+1,
GP2(Zorig+1), GP2(Zorig+1)+1.

[220] In any of the preceding aspects, the circulant size is selected from one of Zosig, Zorig+1,
GP2(Zorig+2), GP2(Zorig+2)+1.

[221] In any of the preceding aspects, the circulant size is selected from one of Zosig, Zorig+1,
Zorig+2, GP2(Zorig+3), GP2(Zorig+3)+1, GP2(Zorig+3)+2, GP2(Zorig+3)+3, GP2(Zorig+3)*2.

[222] In any of the preceding aspects, the circulant size is selected from one of a fixed

number of options, and wherein the number of options is equal to 8, 4 or 2.

[223] While the invention has been described primarily with reference to encoding data for
wireless transmission, those of ordinary skill in the art will recognize that the invention is not
limited to wireless transmission but may be applied to wired and optical transmission systems

as well.

[224] While this invention has been described with reference to illustrative embodiments,
this description is not intended to be construed in a limiting sense. Various modifications and
combinations of the illustrative embodiments, as well as other embodiments of the invention,
will be apparent to persons skilled in the art upon reference to the description. It is therefore

intended that the appended claims encompass any such modifications or embodiments.

40

WO 2018/141277 PCT/CN2018/075185

WHAT IS CLAIMED IS:

1. A method for encoding data, comprising:

receiving a K-bit source word input;

encoding the K-bit source word input according to a LDPC code, a lifting function, and a
circulant size offset to generate an N-bit code word output, wherein the circulant size and lifting
function are determined according to an information length, a code rate, and a decoder; and

storing the N-bit code word output in input/output memory.

2. The method of claim 1, wherein circulant size, Z, is limited by a set of allowed values such
that Z is in a form n*2”s where n is a positive integer from a fixed set of integers and s is a non-
negative integer, such that the options for Z are first 2 or more smallest numbers that have a
form of n*2”'s and are greater or equal to Zoig, Wwherein Zo:ig is a minimal possible circulant size

to encode the given number of information bits.

3. The method of claim 1 or 2, wherein shifts of non-zero circulants for predefined positions
are unchanged.
4. The method of any of claims 1-3, wherein the lifting table is shared by at least some the

one or more mother codes obtained by puncturing parity bits to change the rate of the code.

5. The method of any of claims 1-4, where the lifting functions for defining child shifts from
the mother shift are defined as selecting the given number of bits from the binary representation

of the mother shift at some predefined positions.

6. The method of any of claims 1-4, where the lifting functions for defining child shifts from
the mother shift are defined by:

selecting the given number of bits from the binary representation of the mother shift at
some predefined positions; and

selecting the given number of bits from the binary representation of the mother shift at

some other predefined positions.

7. The method of any of claims 1-6, further comprising repeating the selecting the given
number of bits from the binary representation of the mother shift at some other predefined

positions several times.

41

WO 2018/141277 PCT/CN2018/075185

8. The method of claim 1, wherein each iteration of the selecting the given number of bits
from the binary representation of the mother shift at some other predefined positions several

times comprises a substep and further comprising summing results of each such substep.

9. The method of any of claims 1-8, further comprising:
selecting the given number of bits from the binary representation of the result of the

summing at some other predefined positions.

10. The method of claim 1, where the lifting functions for defining child shifts from the
mother shift select a fixed number of adjacent bits from a binary representation of the mother

shift value.

11. The method of claim 1, wherein the lifting functions for defining child shifts from the
mother shift select the fixed number of most significant bits from the binary representation of

the mother shift value.

12. The method of claim 1, wherein the lifting functions for defining child shifts from the
mother shift select the fixed number of least significant bits from the binary representation of

the mother shift value.

13. The method of any of claims 1-12, wherein the lifting function firstly selects s bits from
the mother shift value at the predefined s bit positions, wherein s corresponds to the minimal
power of 2 greater than equal to circulant size Z (i.e. s = [log,(Z)]), and secondly if this value
appears to be greater or equal to Z, selects s-1 bits from the mother shifts at some other

predefined s-1 positions.

14. The method of any of claims 1-13, wherein the lifting function firstly selects s least
significant bits from the mother shift value, and secondly if this value appears to be greater or

equal to Z, it selects s-1 least significant bits from the mother shifts.

15. The method of any of claims 1-14, wherein the circulant size is selected from one of Zorig,
Zorig+1, Zorig+2, ... , ZorigtdZmaxi, Wherein Zoig is @ minimal possible circulant size to encode the

given number of information bits and dZmay is a positive integer.

16. The method of any of claims 1-14, wherein the circulant size is selected from one of Zorig,

GP2(Zorig+1), GP2(Zorig+1)+1, GP2(Zorig+1)+2, ..., GP2(Zorig+1)+dZmaxs, wherein Zgsig is a minimal

42

WO 2018/141277 PCT/CN2018/075185

possible circulant size to encode the given number of information bits, and wherein GP2(A) is a

minimal power of 2 greater or equal to A and dZmax is a positive integer.

17. The method of any of claims 1-14, wherein the circulant size is selected from one of Zorig,
GP2(Z01-1g+1), GP2(Zong+1)*2, GP2(Z01‘1g+1)*4, .es GP2(Zorlg+1)*2AdZmax3, WhereinZong iS a minimal
possible circulant size to encode the given number of information bits, and wherein dZmax; is a

positive integer.

18. The method of any of claims 1-14, wherein the circulant size is selected from one of Zorig,
Zorigt1, Zorig+2, ... , ZorigtQZmaxi, GP2(Zorig+dZmaxi+1), GP2(Zorig+dZmaxi+1)+1,
GP2(Zorig+dZmaxi+1)+2, ..., and GP2(Zorig+dZmaxi+1)+dZmaxo}, whereinZosig is a minimal possible
circulant size to encode the given number of information bits, wherein GP2(A) is a minimal

power of 2 greater or equal to A, and wherein dZmax and dZmax are positive integers.

19. The method of any of claims 1-14, wherein the circulant size is selected from one of Zorig,
Zorig+1, Zorig+2, .., ZorigtdZmaxi, GP2(Zorig+dZmaxi+1)*2, GP2(Zorig+dZmaxi+1)*4, ...,
GP2(ZorigtdZmaxi+1)*2” dZmax3, Wwherein Zaig is @ minimal possible circulant size to encode the
given number of information bits, wherein GP2(A) is a minimal power of 2 greater or equal to A,

and wherein dZmax and dZmax; are positive integers.

20. The method of any of claims 1-14, wherein the circulant size is selected from one of Zorg,
Zorig+1, Zorig+2, ..., ZorigtdZmax1, GP2(Zorig+dZmaxi+1), GP2(Zorig+dZmaxi+1)+1,
GP2(Zorig+dZmaxi +1)+2, ..., GP2(Zorig+dZmaxi+1)+dZmaxs, GP2(Zorig+dZmaxi +1)*2,
GP2(Zorig+dZmaxi+1)*4, ..., GP2(Zorigt+ AZmaxa+1)*2”" AZmaxs, WwhereinZsig is a minimal possible
circulant size to encode the given number of information bits, wherein GP2(A) is a minimal

power of 2 greater or equal to A, and wherein dZmaxi, dZmaxe, aNd dZmaxs are positive integers.

21. The method of any of claims 1-14, wherein the circulant size is selected from one of Zorig,
Zorig+1, Zorig+2, and Zorig+3, wherein Zoig is @ minimal possible circulant size to encode the given

number of information bits.

22, The method of any of claims 1-14, wherein the circulant size is selected from one of Zorig
and Zrig+1, wherein Zorig is a minimal possible circulant size to encode the given number of

information bits.

23. The method of any of claims 1-14, wherein the circulant size is selected from one of Zorig,
GP2(Zorig+1), GP2(Zorig+1)+1, GP2(Zorig+1)+2, ..., GP2(Zorig+1)+6, wherein Zo.is is a minimal

43

WO 2018/141277 PCT/CN2018/075185

possible circulant size to encode the given number of information bits, and wherein GP2(A) is a

minimal power of 2 greater than or equal to A.

24. The method of any of claims 1-14, wherein the circulant size is selected from one of Zorig,

circulant size to encode the given number of information bits.

25. The method of any of claims 1-14, wherein the circulant size is selected from one of Zorig
and GP2(Zorg+1), wherein Zorig is a minimal possible circulant size to encode the given number

of information bits.

26. The method of any of claims 1-14, wherein the circulant size is selected from one of Zorig,
Zorig+1, Zorig+2, Zorigt3, GP2(Zorig+1), GP2(Zorig+1)+1, GP2(Zorig+1)+2, and GP2(Zorig+1)+3.

27. The method of any of claims 1-14, wherein the circulant size is selected from one of Zouig,
Zorigt1, Zorig+2, Zorigt3, GP2(Zorigt4), GP2(Zorig+4)+1, GP2(Zorig+4)+2, GP2(Zorig+4)+3.

28. The method of any of claims 1-14, wherein the circulant size is selected from one of Zorig,
Zorig+1, GP2(Zorig+1), GP2(Zorig+1)+1.

20. The method of any of claims 1-14, wherein the circulant size is selected from one of Zorig,
Zorig+1, GP2(Zorig+2), GP2(Zorig+2) +1.

30. The method of any of claims 1-14, wherein the circulant size is selected from one of Zorig,
Zorig+1, Zorig+2, GP2(Zorig+3), GP2(Zorig+3)+1, GP2(Zorig+3)+2, GP2(Zorig+3)+3, GP2(Zorig+3)*2.

31. The method of any of claims 1-14, wherein the circulant size is selected from one of a

fixed number of options, and wherein the number of options is equal to 8, 4 or 2.

32. A network component, comprising:

a read only memory comprising at least a parity portion of a mother PCM and a lifting
table; and

a parity bit generator configured to generate parity bits from a source word according to
a child code, the child code determined from the lifting table and the at least a parity portion of
the mother PCM, the lifting table comprising a combination of circulant size and lifting function

according to an information length, a code rate, and a decoder.

44

WO 2018/141277 PCT/CN2018/075185

33. A network component, comprising:

a read only memory comprising at least a parity portion of a mother PCM and a lifting
table;

an input/output memory; and

a check node processor configured to receive a N-bit code word and determine a K-bit
source word according to a child code and store the K-bit source word in the input/output
memory, the child code determined from the lifting table and the at least a parity portion of the
mother PCM, the lifting table comprising a combination of circulant size and lifting function

according to an information length, a code rate, and a decoder.

34. A method for decoding data, comprising;:

receiving an N-bit code word input;

decoding the N-bit code word input according to a LDPC code, a lifting function, and a
circulant size offset to generate an K-bit source word output, wherein the circulant size and
lifting function are determined according to an information length, a code rate, and a decoder;
and

storing the K-bit source word output in input/output memory.

45

WO 2018/141277
1/12
100
102 104 106
NN
A B C
108-T P B 110
FIG. 1

PCT/CN2018/075185

202 ~ [

|- 204

| | e LAYER 1
| | 306 .
EXTENSION | | o
PART | | N e LAYER 2
A | |
308 : : «— LAYER p
Y | |
orole y >le N >
310 312 314

PCT/CN2018/075185

WO 2018/141277

2/12

L UIAYT >

9 HIAV] >

G HIAAY] —>

0Ly q v H3IAYT—

80¥

90¥

e

18l

98¢

S g B

0¥

l6¢| G¢

€ HAAVY] —>

CHIAYT >

r geelier| o [o8L] ¥s | v
| ¥IAYT— _
E_N_\N 0
205 ™ o//mm z8{12v|20¢lozv |10z €Ll |soc|oov | 1z {z8L | 6€ Jsez
_#m,# 15 z¢ee|eiv|ooe| vl |zog|ogz | ect N2 N zL Y81z] sl
8#\1 o#ooooooooooooo
7 'DId

PCT/CN2018/075185

WO 2018/141277

3/12

SL19 M HLONTT NOILYINYOANI

0008 0002 0009 000G 000v 000¢€ 000¢ 0001 0
| | | | | | | ml
205
05 \
|||||||||| o e e e L __
m _,
L D etttk VN e — PPy - A JI)
T e e N
905 ~ . [0

N -

[LT L P =S e =g SO Wl cd WO o P S £ ol oy o™ P e B2 A = e WVirsvre —_— -\
htad UL -

R Vs b

= 6/8=ALYY ——-———- - ————— e e e

/J

9/6=31Vd — — — — Z1G 1G Tevl Y
|§HE<”_||||I.lu..|f|filif\f]f.f N\
|| erz=alvy ———— S
\

V=31V —===—m- -
G/z=ALVd —— — —
¢/=aLVd — —
§/1=31vy

N -

S OId (SNOILY¥3LI 05 "430093d d8 NSdD) INIHIS NOILAYAY HLONIT 0IS0d0¥Hd

0l

Es/NO REQUIRED FOR BLER=10 '2, dB

S118 "M HLONIT NOILYWHOANI

PCT/CN2018/075185

4/12

0008 000, 0009 000§ 0001 000¢ 000¢ 0001 0
]]]]]]]]]
||||||||||||||||||||||||||||||| rlII[l.II|J:]..1kr...I..J.JIIII|||:|rlllll.fl:llll!ll.llrriljlll -
209 e
$09 L,
||||| o — — — — T Y e yn— — AL =~ —— gy — I\ _.__
E-\l..::l_..llrtl._la.ll.].rr.l...l. _._.
909
019
A Ve = P A S e A e S e L S Y o A ey P L e P o \ =
v r.-llfaitllla.alfl
7| 6/8=3LvY —-———-—-
I T pp——
p/e=31vd —— —
¢/¢=41vyd
¢/l=31vYy ———————-

§/¢=31Vy — — — —
el=a1vVy — —
G/l=31vd

WO 2018/141277

9 DI (SNOILY¥3LI 0§ "430093d d¥ ‘NSdD) IWIHIS NOILYAY HLONIT 03S0d0¥d

Es/NO REQUIRED FOR BLER=10 '4, dB

PCT/CN2018/075185

WO 2018/141277

5/12

SNA

€01 0 0 l
<> sNo%|L 0 I 0 l |=H

balo 1 0 0 l

®> m> _w> m> N> _\>
€y [, by |SNO SNA
708 Avu/ow

|l |l |
L DId NOISSINSNYYL W | NOISSINSNYL Pig _|_

[[
_ _

~NOISSINSNYYL P NOISSINSNYYL Puz NOISSINSNYHL 1S)
/ s1lg / sllg s1lg
90, \ INVANNQ3Y 0. NOILYINYOANI a3¥NLONNd
002

PCT/CN2018/075185

WO 2018/141277

6/12

6 DId
~>—
(SIAON F18YINYA) ¢Xe INVINOAII ﬁo 4 O;uo_._
SNA 4014HSANNOY | |, | o
P Mo- Lolfo ofv o]]
(S3aONMO3HD) “o | |+ V[0 0o |
SNO ¢l o 1o t]+ o
g £, Z, Ly amoomzzwom_._ov o | |4 olls oo 1]
bg 0y

006

WO 2018/141277 PCT/CN2018/075185

7/12
1000

k

CALCULATE MINIMAL POSSIBLE CIRCULANT SIZE FOR
EACH RATE AND INFORMATION LENGTH K USING A
FIXED SUBSET OF OPTIONS S FOR CIRCULANT SIZE

Y

1004 FOR EACH OF A PLURALITY OF FUNCTIONS, f;
™ CALCULATE A NON-NEGATIVE
INTEGER SHIFT VALUE FOR THE CHILD CODE

v

SELECT A CIRCULANT SIZE AND FUNCTION INDEX, j,
FOR A GIVEN RATE AND K USING DIRECT SIMULATION
1006 | FOR THE GIVEN TYPE/CLASS OF DECODERS, TARGET
BIT ERROR RATE ER;, DECODING PARAMETERS, ETC.

v

STORE THE RESULTING PAIR (i,j) IN AN OFFSET
TABLE, WHERE i IS AN INDEX OF Z IN

1002 ~|

1008 - best
A SET OF POSSIBLE OPTIONS S FOR Z
END
FIG. 10

1100
1102 */
INFORMATION BITS '/

PCT/CN2018/075185

WO 2018/141277

8/12

1200
\‘

FIG. 12

1306

1

1304
3

1302
3

1300
\\

FIG. 13

1400

~

~

12013 7 11

-1

T @ 1
Tee ST Sy
ceSrST v ST
STy ST T aaT
TS N e s N T
e QTR Sy
o <t
M M o0 YT O <
~ N N —
TNT QTS
o
NI Te ST
o
~ ~
LI g i L
TR
(o} o
~ ~~
ST T Y
Theg v
~ —
IR RS
QS ST LYY
o N
T AN OO YO
~— ~
T T T T Qe
Ayl il ol e B ol No |
L L5

FIG. 14

WO 2018/141277 PCT/CN2018/075185

9/12

1500

\‘

INFORMATION PART PARITY PART

o] [=] [=

FIG. 15

1600
N 1602

1

ROM MEMORY
MOTHER PCM

’ 1608
1606

LIFTING TABLE

Y

I/O MEMORY

K-BIT INPUT C 1612 N-BIT OUTPUT
—> 1610 / —>
SOURCE WORDS CODE WORDS
PARITY BIT
PROCESSOR/GENERATOR

/A

WO 2018/141277

10/12

1700
N 1702

1

PCT/CN2018/075185

ROM MEMORY

MOTHER PCM

/1708
1706

LIFTING TABLE

Y

N-BIT INPUT —»

1704-"]

I/O MEMORY

;171
1712 /0

CHECK NODE
PROCESSOR

— K-BIT OUTPUT

1800

FIG. 17

1900

\

1802~

RECEIVE K-BIT INPUT

Y

18041

ENCODE THE K-BIT INPUT
WITH LDPC CODE TO
GENERATE AN N-BIT OUTPUT

!

1806

STORE AND/OR TRANSMIT
THE N-BIT OUTPUT

END

FIG. 18

/

RECEIVE A N-BIT CODE WORD

|~ 1902

!

DECODE THE N-BIT CODE WORD
USING LIFTING TABLE AND
LIFTING FUNCTIONS TO
GENERATE A K-BIT SOURCE WORD

- 1904

!

STORE THE K-BIT
SOURCE WORD

™~ 1906

END

FIG. 19

WO 2018/141277 PCT/CN2018/075185
11/12
2000
/
2014~ |NTERFACE
2010 2004 2012
\ \ /
INTERFACE PROCESSOR INTERFACE
FIG. 20
21&0
2112 2110 2106 2104 2102
\ \ / / /
L { TRANSMITTER H
DEVICE-SIDE | © SIGNAL NETWORK-SIDE
INTERFACE(S) | & | PROCESSOR COUPLER ™ INTERFACE(S)
|| RECEVER
N
2108 FIG. 21

WO 2018/141277

| 2220~

PCT/CN2018/075185

2200

2230

BACKHAUL

NETWORK

UPLINK
CONNECTION

_ DOWNLINK
CONNECTION

INTERNATIONAL SEARCH REPORT International application No.
PCT/CN2018/075185

A. CLASSIFICATION OF SUBJECT MATTER
HO3M 13/05(2006.01)1

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

HO3M

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)

CNTXT,CPRSABS,CNKLVEN,SIPOABS,USTXT,EPTXT:lifting, circulant, LDPC, code, decode, length, rate, memory,
PCM, mother code, child code, table, function, offset, size

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category™ Citation of document, with indication, where appropriate, of the relevant passages Relevant to claim No.
X US 2013139024 A1 (NGUYEN THUY VET AL.) 30 May 2013 (2013-05-30) 1. 34
abstract, claims 1-20, Fig.2
X US 2011066916 Al (SAMSUNG ELECTRONICS CO LTD) 17 March 2011 (2011-03-17) 1. 34
claims 1-20
A CN 102939720 A (SAMSUNG ELECTRONICS CO., LTD) 20 February 2013 (2013-02-20) 1-34

the whole document

D Further documents are listed in the continuation of Box C. See patent family annex.

* Special categories of cited docurnents: «T” later document published after the international filing date or priority
e . L . date and not in conflict with the application but cited to understand the
A” document defining the general state of the art which is not considered principle or theory underlying the invention
to be of particular relevance g X . .
. . L . . . “X document of particular relevance; the claimed invention cannot be
E” earlier application or patent but published on or after the international considered novel or cannot be considered to involve an inventive step
filing date] o] o when the document is taken alone
“L” document which may throw doubts on priority claim(s) or which is «y” document of particular relevance; the claimed invention cannot be
cited to establish the publication date of another citation or other considered to involve an inventive step when the document is
special reason (as specified) combined with one or more other such documents, such combination
“0” document referring to an oral disclosure, use, exhibition or other being obvious to a person skilled in the art
means “&» document member of the same patent family
“p” document published prior to the international filing date but later than
the priority date claimed
Date of the actual completion of the international search Date of mailing of the international search report
15 April 2018 26 April 2018
Name and mailing address of the ISA/CN Authorized officer
STATE INTELLECTUAL PROPERTY OFFICE OF THE
P.R.CHINA
6, Xitucheng Rd., Jimen Bridge, Haidian District, Beijing LLXiao
100088
China
Facsimile No. (86-10)62019451 Telephone No. 86- (010) -62412283

Form PCT/ISA/210 (second sheet) (January 2015)

INTERNATIONAL SEARCH REPORT

Information on patent family members

International application No.

PCT/CN2018/075185

Patent document

Publication date

Patent family member(s)

Publication date

cited in search report (day/month/year) (day/month/year)

Us 2013139024 Al 30 May 2013 us 8832520 B2 09 September 2014

[N 2011066916 Al 17 March 2011 us 8560911 B2 15 October 2013

CN 102939720 A 20 February 2013 CN 102939720 B 06 January 2016
WO 2011159089 A3 12 April 2012
KR 20130092426 A 20 August 2013
DE 112011101995 T5 16 May 2013
us 8732565 B2 20 May 2014
us 2011307760 Al 15 December 2011
WO 2011159089 A2 22 December 2011

Form PCT/ISA/210 (patent family annex) (January 2015)

	Bibliography
	Description
	Claims
	Drawings
	Search report

