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Abstract.

In this article the construction of parametric classes of Latin Squares over Boolean
n-vectors is demonstrated so that these Latin Squares are represented in analytical form
by families of Boolean functions. This construction leads to the new property of Boolean
functions which is named property. We deduce some classifying results about these fam-
ilies of functions.

Introduction.

Latin Squares are important object of Mathematics and Cryptology and have numer-
ous applications in cryptographic practice. Ciphers on Latin Squares according to theory
of C. Shannon [4] are so called perfect. But in most ciphering standards Latin Squares
are not changeable and changeability of Latin Squares in ciphering system may raise the
level of information security. There are many directions of research in the theory of Latin
Squares and the main part of it is the modes of constructing classes of Latin Squares under
some conditions. Practical adaptation of Latin Squares in computer ciphering systems
requires them to have large dimension and to be changeable. Therefore there is necessity
to determine Latin Square analytically and parametrically by functions of two variables,
that determines element of square by number of row and column.

Latin Square over set S is the table of dimension n×n, where n = S , consisting from
elements of S, so that in each row and column all elements are different. There are many
applications of Latin Squares in coding theory and cryptology ([4], [5]). In the literature
there are many modes of constructing of Latin Squares in table form and this detail is an
obstacle to the applications in the case of large n = |S|.

The aim of this paper is the presentation some results relating to the construction of
parametric families of Latin Squares over set S where S is set of Boolean n—vectors in
analytic form. When element of square is determined by function on number of row and
column. Also we have some classifying results relating to the form of these functions.

Let En — the set of binary vectors of dimension n. In this case Latin Square over set
En may be determined by family of n Boolean functions

f1(x1, . . . , xn, y1, . . . , yn)
f2(x1, . . . , xn, y1, . . . , yn)

. . .
fn(x1, . . . , xn, y1, . . . , yn)

(1)

of 2n variables, where x1, . . . , xn determins the number of row, y1, . . . , yn — the number
of column, meaning of functions f1, . . . , fn determines corresponding element of square.
By using results about the regularity of families boolean functions [6] it is easy to prove
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Theorem 1 The family of n Boolean functions f1, . . . , fn with 2n variables x1, . . . , xn,
y1, . . . , yn determines the Latin Square if and only if, when in all products fi1 , . . . , fik , 1 ≤
i1 < . . . < ik ≤ n, k < n canonical polynome don’t contains terms, including x1 . . . xn

or y1 . . . yn, but product f1 . . . fn contains both this terms and no other terms containing
them.

This proposition does not give the effective mode of constructing necessary functions but
may be useful for finding sufficient conditions for solving this question.

Let us consider the mode of introduction the parameter in the family of Latin Square.
Let we have the family of Boolean functions

g = (g1(z1, . . . , zn), . . . , gn(z1, . . . , zn)) (2)

with n variables z1, . . . , zn. Let

π1(x1, y1), . . . , πn(xn, yn) (3)

— system of Boolean functions with two variables. Let system of Boolean functions
f1, . . . , fn with 2n variables x1, . . . , xn, y1, . . . , yn is defined by relations:

f1 = x1 + y1 + g1(π1(x1, y1), . . . , πn(xn, yn))
f2 = x2 + y2 + g2(π1(x1, y1), . . . , πn(xn, yn))

. . .
fn = xn + yn + gn(π1(x1, y1), . . . , πn(xn, yn))

(4)

Let us remind the definition from the article [1]. The family of Boolean functions g =
(g1, . . . , gn) is named proper, if for all distinct n—collections of variables z

′
=

(
z
′
1, . . . , z

′
n

)
and z

′′
=

(
z
′′
1 , . . . , z

′′
n

)
exists α ∈ 1, n such that next relation is hold

z
′
α 6= z

′′
α, gα(z

′
1, . . . , z

′
n) = gα(z

′′
1 , . . . , z

′′
n) (5)

Theorem 2 The system of Boolean functions f1, . . . , fn as (4) determines the Latin
Square for any functions of two variables π1, . . . , πn if and only if when the family of
functions g = (g1, . . . , gn) is proper.

Proof.Let the functions π1, . . . , πn with two variables exist and family of functions f1, . . . , fn,
defined by (4), does not determine the Latin Square. Then we have

f1

(
x
′
1, . . . , x

′
n, y1, . . . , yn

)
= f1

(
x
′′
1 , . . . , x

′′
n, y1, . . . , yn

)
. . .

fn

(
x
′
1, . . . , x

′
n, y1, . . . , yn

)
= fn

(
x
′′
1 , . . . , x

′′
n, y1, . . . , yn

) (6)

for certain x
′
1, . . . , x

′
n, x

′′
1 , . . . , x

′′
n, y1, . . . , yn, where

(
x
′
1, . . . , x

′
n

) 6= (
x
′′
1 , . . . , x

′′
n

)
, or

f1

(
x1, . . . , xn, y

′
1, . . . , y

′
n

)
= f1

(
x1, . . . , xn, y

′′
1 , . . . , y

′′
n

)
. . .

fn

(
x1, . . . , xn, y

′
1, . . . , y

′
n

)
= fn

(
x1, . . . , xn, y

′′
1 , . . . , y

′′
n

) (7)

for certain x1, . . . , xn, y
′
1, . . . , y

′
n, y

′′
1 , . . . , y

′′
n, where

(
y
′
1, . . . , y

′
n

) 6= (
y
′′
1 , . . . , y

′′
n

)
. Let (6) is

hold, then using (4) we get equations

x
′
1 + g1(π1(x

′
1, y1), . . . , πn(x

′
n, yn)) = x

′′
1 + g1(π1(x

′′
1 , y1), . . . , πn(x

′′
n, yn))

. . .
x
′
n + gn(π1(x

′
1, y1), . . . , πn(x

′
n, yn)) = x

′′
n + gn(π1(x

′′
1 , y1), . . . , πn(x

′′
n, yn))

(8)
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Let us put the signings z
′

=
(
z
′
1, . . . , z

′
n

)
, where z

′
i = πi

(
x
′
i, yi

)
, i = 1, n and z

′′
=(

z
′′
1 , . . . , z

′′
n

)
, where z

′′
i = πi

(
x
′′
i , yi

)
, i = 1, n and consider the pair

g
(
z
′
)

=
(
g1

(
z
′
)

, . . . , gn

(
z
′
))

g
(
z
′′
)

=
(
g1

(
z
′′
)

, . . . , gn

(
z
′′
))

If for all α ∈ 1, n is hold gα

(
z
′) 6= gα

(
z
′′)

, then the condition of property for family

g = (g1, . . . , gn) is not hold on pair z
′
and z

′′
. If exists α ∈ 1, n, such, that gα

(
z
′)

= gα

(
z
′′)

is hold then from relation (8) we get x
′
α = x

′′
α. And then πα

(
x
′
α, yα

)
= πα

(
x
′
α, yα

)
so we

have z
′
α = z

′′
α. Consequently in this case the condition of property of family g1, . . . , gn is

not hold on pair z
′
and z”. The case (7) is proved by similar way. So we have if system of

functions (4) does not determine the Latin Square for any functions π1, . . . , πn then the
family g1, . . . , gn is not proper. Let now the family g1, . . . , gn is not proper. This means
that exists pair of variables z

′
=

(
z
′
1, . . . , z

′
n

)
and z

′′
=

(
z
′′
1 , . . . , z

′′
n

)
, such that for all

α ∈ 1, n with condition z
′
α 6= z

′′
α we have gα

(
z
′) 6= gα

(
z
′′)

. Let us consider any x1, . . . , xn

and y1, . . . , yn. Consider the pair x
′
1, . . . , x

′
n and x

′′
1 , . . . , x

′′
n, where

x
′
i = xi + gi

(
z
′)

, i ∈ 1, n
. . .

x
′′
i = xi + gi

(
z
′′)

, i ∈ 1, n
(9)

Now determine the functions π1, . . . , πn so that is hold

πi

(
x
′
i, yi

)
= z

′
i, i ∈ 1, n

. . .
πi

(
x
′′
i , yi

)
= z

′′
i , i ∈ 1, n

(10)

This is impossible only in the case when x
′
i = x

′′
i , but z

′
i 6= z”

i for some i ∈ 1, n. But
if x

′
i = x

′′
i , then from (9) we have gi

(
z
′)

= gi(z
′′
) and with condition on z

′
and z

′′
we

have z
′
i = z

′′
i . Now it is easy to see from (4), that elements of the square corresponding(

x
′
1, . . . , x

′
n, y1, . . . , yn

)
and

(
x
′′
1 , . . . , x

′′
n, y1, . . . , yn

)
equal (x1, . . . , xn), and the square (4)

is not Latin for given functions π1, . . . , πn. ¥

Remark 1 The notion of property for family Boolean functions was introduced in [1] in
connection of study regularity (substitution property) of boolean automata. There it is
proved following criteria.

Theorem 3 A family of Boolean functions f1, . . . , fn with variables x1, . . . , xn is proper
if and only if when in all products fi1 . . . fik there are not terms xi1 . . . xik in corresponding
canonical polynoms.

Let us consider the connection of proper and regular families of Boolean functions. It is
easy to prove

Theorem 4 A family of Boolean functions f = (f1, . . . , fn) is proper if and only if when
the family g1, . . . , gn, where gi = aifi + xi for all constant ai, is regular, i = 1, n.
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Now we give some classifying results about the proper families functions. For effective
application of this construction of Latin Squares we need to describe some classes of proper
families of Boolean functions. For any families functions f = (f1, . . . , fn) of variables
x1, . . . , xn define the oriented graph Gf of essential variable as Gf = (V,E), where V =
{1, . . . , n}, (i, j) ∈ E when variable xi is essential for fj. It is easy to see that if Gf =
(V,E) has no cycles then the family f = (f1, . . . , fn) is proper. Inverse assertion is not
true. Let us consider the family f = (f1, . . . , fn) where

f1 = (x2 + 1)x3 . . . xn

. . .
fn = (x1 + 1)x2 . . . xn−1

(11)

It is easy to see that graph Gf , is complete but the family f = (f1, . . . , fn) is proper. Let
M be class multyaffine functions. That is every function f ∈ M is conjunction of lineal
functions. Let f is the family of multyaffine functions. This means that f = (fi i ∈ 1, n)
may be presented as

f1 =
k1∏
i=1

l1i (x1 . . . xn)

f2 =
k2∏
i=1

l2i (x1 . . . xn)

. . .

fn =
kn∏
i=1

lni (x1 . . . xn)

(12)

where ki i ∈ 1, n — number of linear functions in fi, and lti = at
1x1 + . . . + at

nxn + bt —
lineal function over the field F2, 1 ≤ t ≤ n. Define oriented graph G0

f of entering variables
in family f , by putting

G0
f = (V, E) (13)

where V = {1, 2, . . . , n}, (i, j) ∈ E ⇔ ∃s | the function ljs contains xi (that is aj
s = 1).

Remark 2 The graph G0
f of entering variables contains as subgraph graph Gf of essen-

tiality variables of family f . Designing of graph G0
f is simple, designing of graph Gf is

NP—hard problem for many classes of functions ([2]).

The cycle for which no proper subset of vertexes do not contain cycle we will name as
simple.

Theorem 5 The family of multyaffine functions f = (fi) i ∈ 1, n, is proper if and only
if when for every simple cycle C of the graph of entering variables G0

f of family f is hold

∏
i∈C

fi(x1, . . . , xn) ≡ 0 (14)

Proof.Let the simple cycle C of the graph Gf exists and condition (14)is not hold, that
is ∏

i∈C

fi(x1, . . . , xn) 6= 0 (15)
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Let C = i1, . . . , is, ik ∈ 1, n. This means that function fi1 contains entering variable xi2

and does not contain entering variables xi1 , xi3 , . . . , xis Similarly it is true about functions
fi2 , . . . , fis . The functions fi1 , . . . , fis may be presented as

fi1 = (. . . + xi2 + . . .) . . . (. . . + xi2 + . . .)ϕi1(x1, . . . , xn)
. . .

fis = (. . . + xi1 + . . .) . . . (. . . + xi1 + . . .)ϕis(x1, . . . , xn)
(16)

here ϕi1—multyaffine function, not containing the entering xi2 . Similarly, ϕis—multyaffine
function, not containing the entering xi1 , multipliers by ϕi1 are linear functions, containing
entering xi2 , multipliers by ϕis are linear functions, containing entering xi1 . According to
(15) there is n—collection x = (x0

1, . . . , x
0
n), such that

∏
i∈C

fi(x
0
1, . . . , x

0
n) = 1. Consequently

we have
fi1

(
x0

1, . . . , x
0
n

)
= . . . = fis

(
x0

1, . . . , x
0
n

)
= 1 (17)

Let us consider collection x̃ =
(
x0

1, . . . , x̄
0
i1
, . . . , x̄0

is , . . . , x
0
n

)
, which is took from x =

(x0
1, . . . , x

0
n) by negotiating of variables with indexes from C.

Then from (16) we conclude that it is hold

fi1(x̃) = fi2(x̃) = . . . = fis(x̃) = 0 (18)

From (17) and (18) we see that family f is not proper if we take two collections x =
(x0

1, . . . , x
0
n) and x̃ =

(
x0

1, . . . , x̄
0
i1
, . . . , x̄0

is , . . . , x
0
n

)
. Conversely, let for any simple cycle C

of graph G0
f the relation (14) is hold. For family f = (fi) i ∈ 1, n let us consider the

family f̌ =
(
f̌i

)
i ∈ 1, n, where

f̌(x1, . . . , xn) = xi + fi(x1, . . . , xn), ∀i ∈ 1, n. (19)

Let I i ∈ 1, n — the set of indexes, εI = (εα), α ∈ I, ε ∈ {0, 1} — family of constants.
For any function g = (g1, . . . , gn) we put

gεI (xi, i ∈ CI) = g(x1, . . . , xn) |xα=εα,α∈I

That is the variables with indexes from I are substituted by constants εI , CI—the com-
plement I in i ∈ 1, n. It is proved (see.[1], Lemma 2), that f is proper family if and only
if when the family

f̌ εI =
(
f̌ εI

i

)
, i ∈ CI

is regular for all I 6= 1, n and all εI .

For proving regularity any family of Boolean functions g = (g1, g2, . . . , gn) with vari-
ables x1, x2, . . . , xn we will use criteria of Huffman (see. [6]), according to which the family
g = (g1, g2, . . . , gn) is regular if and only if when for any indexes i1, i2, . . . , ik, k ≤ n − 1
the product gi1gi2 . . . gik does not contain term x1x2 . . . xn in canonical polynom, but the
product g1g2 . . . gk contain this term. Let the set I is empty. Prove the regularity of
family f̌ =

(
f̌i

)
i ∈ 1, n We have

f̌1 . . . f̌n = x1 . . . xk +
∑ ∏

i∈p1

xi

∏
j∈p2

fj (20)

Summation over all partitions (p1, p2) the set i ∈ 1, n, where p2 6= 0. Prove that∑ ∏
i∈p1

xi

∏
j∈p2

fj for all (p1, p2), p2 6= 0 does not contain the term x1x2 . . . xn. If on the
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contrary for any (p1, p2), p2 6= 0 there is the term x1x2 . . . xn, then it is hold fj 6= 0 if
j ∈ p2 and

∏
j∈p2

fj(x1 . . . xn) contains term
∏

j∈p2

xj.

Let us consider subgraph Hf (p2) of the graph Gf , which contains the vertexes of the
set p2. By the definition we have that from every vertex goes out at least one edge. It is
easy to see that in this case Hf (p2) contains the simple cycle C and by the condition we
must have ∏

j∈C

fj(x1 . . . xn) = 0

But the set p2 contains the vertexes C as subset. Consequently we have
∏

j∈p2

fj(x1 . . . xn) ≡
0. Then the term

∏
i∈p1

xi

∏
j∈p2

fj if p2 6= 0 does not contain the term x1x2 . . . xn and there-

fore, by (20) the product f̌1 . . . f̌n contains such term. Let now such k < n and indexes
1 ≤ i1 < . . . < ik ≤ n exist that product f̌i1 . . . f̌ik contains the term x1x2 . . . xn. We have

f̌i1 . . . f̌ik = xi1xi2 . . . xin +
∑ ∏

i∈p1

xi

∏
j∈p2

fj (21)

Summation over all partitions (p1, p2), p2 6= 0 the set i1, i2, . . . , ik. This means that exists
the partition (p1, p2), p2 6= 0, such that the term

∏
i∈p1

xi

∏
j∈p2

fj contains the term x1x2 . . . xn.

Consequently the term
∏

j∈p2

fj contains the term
∏

i∈Cp1

xi, where Cp1 is the complement

of the set p1 in 1, n. Consider the subgraph Hf (p2) on vertexes of the set p2. Since the
functions with indexes from the set p2 give the term

∏
i∈Cp1

xi then by the definition of the

graph Gf from each vertex of Cp1 at least one edge goes out with the end in p2. By the
condition we have p2 ⊂ Cp1 and therefore the graph Hf (p2) contains the cycle. Then we
have the consequence

∏
j∈p2

fj(x1 . . . xn) ≡ 0 and the term x1x2 . . . xn does not appear in

(21). Hence it is proved that the family f̌1 . . . f̌n is regular according to Huffman’s criteria.

Let I ⊂ 1, n—strictly subset, εI—arbitrary family of the constants. Regularity of the
family f εI = (f εI ) , i ∈ CI (with variables xi, i ∈ CI) may be proved by the similar
arguments. This is possible because by the substitution the variables by the constants
the multyaffine function is also multyaffine and the condition (19) is hold by substitution
of variables with the constants. ¥

Now we give recursive mode constructing the proper families of functions. Let there
is the family f

′
functions with variables zi0, . . . , zin. Define family of n + s1 + . . . + sn

functions f = (fij) with variables zij, i = 1, . . . , n, j = 1, . . . , si (s1, . . . , sn—any natural
numbers ≥ 0) by relations

fi1 = Φi1(f
′
i0, xi0)

fi2 = Φi2(f
′
i0, xi0, zi1)

. . .
fist = Φist(f

′
i0, xi0, zi1, . . . , zist−1)

fi0 = Φi0(f
′
i0, xi0, zi1, . . . , zist)

(22)

Φi0, Φi1, . . . , Φist—any functions with corresponding (22) variables.

Theorem 6 If the family f
′
is proper, then the family f is proper also for any functions

Φij, i ∈ 1, n, j ∈ 0, st.
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Proof. Let the family f is not proper. Hence there is the pair of distinct collections
z
′

=
(
z
′
ij

)
, i ∈ 1, n, j ∈ 0, st, and z

′′
=

(
z
′′
ij

)
, i ∈ 1, n, j ∈ 0, st such that for all α, β,

when z
′
αβ 6= z

′′
αβ we have fαβ(z

′
) 6= fαβ(z

′′
). There are two events:

1. z
′
0 6= z

′′
0 , where z

′
0 =

(
z
′
10, . . . , z

′
n0

)
, z

′′
0 =

(
z
′′
10, . . . , z

′′
n0

)
By the definition for family

f
′
0 =

(
f
′
10, . . . , f

′
n0

)
there is α ∈ 1, n, such that z

′
α0 6= z

′′
α0 and fα0(z

′
) = fα0(z

′′
). From

relations (22) we get that fα1(z
′
) = fα1(z

′′
) and accordingly the presumption about

family f we get z
′
α1 = z

′′
α1. Again from relations (22) we get fα2(z

′
) = fα2(z

′′
) and

therefore we have z
′
α2 6= z

′′
α2. The prolongation gives to us the relation z

′
αst

= z
′′
αst

and from (22) we get the relation fα0(z
′
) = fα0(z

′′
) and hence z

′
α0 6= z

′′
α0, what

contradicts the condition of α.

2. z
′
0 = z

′′
0 . In this case from relations (22) we have fi1(z

′
) = fi1(z

′′
) for all i ∈ 1, n.

By the presumption about family f we have z
′
i1 = z

′′
i1 for all i ∈ 1, n. Now from (22)

we have fi2(z
′
) = fi2(z

′′
) for all i ∈ 1, n. This implies z

′
i2 = z

′′
i2 for all i ∈ 1, n. The

prolongation gives to us that z
′
ist

= z
′′
ist

for all i ∈ 1, n and consequently z
′
= z

′′
.

This contradicts the choice the pair z
′
, z

′′
. This proves that the family f is proper.

¥

Remark 3 Some generalizations of demonstrated facts for families functions over Abelian
groups are presented in paper [3].

Conclusion.

The construction of parametric family of Latin Squares in analytic form and arbitrary
large size is presented. This construction is based on some property of families functions
named proper family. For this property some classifying and constructing results are
demonstrated. Application of these results to the ciphering system may get the changeable
Latin Square in them and to be fit for long data. These applications may guarantee more
high level of information security.
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