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The lattice of all clones of self-dual functions in three-valued
logic is described. Even though this lattice contains a continuum
of clones, a simple description was found. Using this description
various properties of the lattice and of the clones were derived.
Pairwise inclusion of the clones into each other was described,
and bases for all clones were found. Also, for each clone the
relation degree, the cardinalities of the corresponding principal
filter and principal ideal were determined.
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Preamble

This paper is devoted to the classical problem of Clone Theory: finding a
description of the lattice of clones. In [10], [11] Post described all clones
in two-valued logic. It turned out that all such clones are finitely generated
and the lattice of these clones is countable. But in 1959 it was proved that
there exists a continuum of clones in k-valued logic for £ > 3 [6]. Hence,
it seems hardly possible to obtain a complete description of the lattice of all
clones even in three-valued case. Nevertheless, Jablonskij [4] described all
maximal (also known as precomplete) clones in three-valued logic. It turned
out that all maximal clones except the clone of all linear functions contain a
continuum of subclones [3, 8].

This paper is devoted to the maximal clone of self-dual functions. It con-
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on this subject were obtained by Marchenkov. He and co-authors found many
clones of self-dual functions [9] and showed that there exists a continuum of
such clones [8].

In spite of continuum cardinality we found a complete description of all
clones of self-dual functions, which is presented in this paper. Thus, this is
the first maximal clone besides the clone of all linear functions that has such
description.

In the paper we define a set of predicates II (we do not distinguish sharply
between relations and predicates; since we operate with formulas, it is usually

. . . 0 2
sists of all functions that preserve the relation ( ) . Important results



proper for us to use the word predicate). Using these predicates we define a
class of clones Y that has continuum cardinality. These are all clones of self-
dual functions except countably many clones. The other clones are divided
into two classes © and ®. The finite class © consists of all clones that are
self-dual with respect to the permutation of 0 and 1. The countable class ®
contains all remaining clones. Note that all clones in the finite class © and
many clones in the countable class ¢ were already found in [9]. In the defi-
nition of the class ® we say precisely which clones are already known from
[9] and which are new. Thus, the main result of this paper is the description
of the class Y.

Every clone is defined as the set of all functions that preserve some set of
relations (finite or infinite). We find the relation degree for every clone, and
thereby prove that our description is minimal.

Using the description we show various properties of the lattice and of the
clones. It is well-known that some clones in three-valued logic have no basis
[6]. Nevertheless, we prove that every clone of self-dual functions has a basis
(finite or infinite), and we present bases for all of them.

We also describe pairwise inclusion of the clones into each other. For
the finite and countable classes of clones pairwise inclusion is shown by a
graph in Figure 2. For the class of clones T we formulate theorems that
describe pairwise inclusion. Finally, for each clone in the lattice we find the
cardinalities of the corresponding principal filter and principal ideal.

As expected, the description of the class Y is rather complicated. Never-
theless, all listed properties can be easily derived from it. Moreover, in the
first section we show that using our description we can easily obtain every
finite sublattice of the part of the lattice that has continuum cardinality. We
present the lattice of all clones that can be defined by predicates of arity 4.
This lattice was found without a computer. Of course, using a computer big-
ger sublattices can be completely described.

To obtain the main result we essentially use the Galois connection between
clones and relational clones. Moreover, we do not use the closure operator
for functions, and functions are only auxiliary objects in the paper. It can be
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The main idea of the proof is the following. We introduce a notion of an

essential predicate. Essential predicates are all predicates that can not be pre-
sented as a conjunction of predicates with smaller arities. A closure operator
is defined on the set of all essential predicates, and it is proved that there ex-
ists a one-to-one correspondence between relational clones and closed sets of

said that we find relational clones that contain the relation (0 ! 2) .



essential predicates. Thus, to describe all clones we just need to describe all
closed sets of essential predicates. The set of all essential predicates is small
enough, and for most clones of self-dual functions we completely describe all
essential predicates that are preserved by functions from this clone.

This paper is organized as follows. In Section 1 we give main defini-
tions and formulate main results of the paper. There we define three classes
of clones, describe pairwise inclusion of clones into each other, and present
bases for all clones. At the end of this section we formulate theorems that for
every clone determine the relation degree, the cardinalities of the correspond-
ing principal filter and principal ideal.

In Section 2 we introduce necessary notions and prove important proper-
ties related to these notions. There we define a closure operator for predicates
and the Galois connection between clones and relational clones. Then, neces-
sary notations are described. After that we formulate the notion of an essen-
tial predicate and prove various properties of essential predicates. At the last
part of this section we define the closure operator on the set of all essential
predicates and prove important properties of this closure operator.

Section 3 is devoted to the construction of the classes ® and Y. Firstly,
we describe all essential predicates that are preserved by the self-dual exten-
sion of disjunction. Then, we sequentially construct the lattice of the clones.
Finally, we prove that if a clone contains the extension of disjunction and
preserves the set {0, 1}, then this clone belongs to ®, Y, or ©.

In Section 4 we prove the main statements and theorems of this paper.
Firstly, we show that clones from © U ® U T are all clones of self-dual func-
tions in three-valued logic. Then we prove theorems about pairwise inclusion
of clones into each other, theorems related to bases of clones, the relation
degree of clones, and other statements.

At the end of the paper we give a list of main notations.

Note that the preliminary version of this result was already published in
the book [12] in Russian.

The author is grateful to V.B. Kudryavtsev for supervision. This paper
is started from a Haskell program developed by S. Moiseev that constructed
clones in three-valued logic defined by predicates of small arities. Also, the
author is grateful to A. Chernova for preparing figures for the paper. Finally,
I want to thank the referees of the paper for careful reading and very useful
remarks.



1 MAIN STATEMENTS AND THEOREMS.

1.1 Main definitions.
LetN={1,2,3,...},No={0}UN, E;, ={0,1,2,...,k — 1}, forn e N

Pr={f|f:E}—E}, P=] P

n>1

Suppose F' C Py, then by [F'] we denote the closure of F' under superpo-
sition [7]. A set F' C P, is called a clone if F' is closed and F' contains all
projections. By Ji we denote the set of all projections. The clones form an
algebraic lattice whose least element is J;, and whose greatest element is Pj.

A mapping El' — {0, 1} is called an h-ary predicate. For h € N let

Ry={plp:Ef -+{0,1}}, Re=J R}
h>0

As mentioned above, we do not distinguish between predicates and relations.
So instead of p(ay,...,a,) = 1 we also write (a1, ...,a,) € p. Sometimes
we write ajas . . . ap, instead of (a1, as, ..., ay) and operate with tuples like
with words. Let a € EJ, then by (i) we denote the i-th element of «. We
suppose that functions from P}, are also defined in the usual way on tuples
or words from E7. That is, suppose a1, ..., a, € ER, f € PJ, then we put
flar,...,an) = B, where 8 € E!, B(i) = f(ai(i), a2(i),...,a,(i)) for
every i € {1,2,...,h}.
In this paper predicates are often written as matrices. We write

b171 b2_’1 R bn,l
_ b1,2 b2’2 . bn’g
b17h b27h . bn,h

if p € RZ, p(bi1,bi2,...,b;p) = 1forevery i € {1,2,...,n} and the
predicate p is equal to O on the other tuples.
We say that a function f € P;"* preserves a predicate p if

flag,ag,...,cqun) €Ep

for every aq, o, ...,y € p.
By Pol(p) we denote the set of all functions f € P}, that preserve a predi-

cate p. For S C Ry, we put Pol(S) = [ Pol(p).
peS



By Inv(f) we denote the set of all predicates p € Ry, that are preserved
by a function f. For M C P, we put Inv(M) = () Inv(f).
feMm

Leto : B3 — FE3,0(0) =1,0(1) =0, 0(2) = 2. For p € R3 by p* we
denote the predicate that is dual to p with respect to the transposition o:

P (z1, .. xn) = plo(x1),0(x2),...,0(zn)).

Note that this duality is not the same as the duality in the definition of self-
dual functions, which is the duality with respect to the cyclic permutation of
0,1 and 2. Suppose S C Rj, then put S* := {p* | p € S}.

1.2 The lattice of the clones

Now we define several predicates, which we are going to use to define the
three classes of clones.

(01 2 (00 1
Pr1=1\1 2 o) <7 \o 1 1)’
(0111 (00

PN=K0 01 2/ o1
(01 2 (01 (00 1
Pr=\1 0 2P~ \1 o) \1 2 o
Paty+tz(T1, T2, 23) =1 < 1 + 22 + 23 = 0(mod 3),

pz@y@z(x17x27$3) =1&
(Vi z; € {0,1}) A (21 + 22 + 23 = 0(mod 2)),

pvn(T1,. ... xp) =1%
Viz; €{0,1)A(z1=1)V(za=1) V...V (z, = 1)),

P—>,n($17 cee s Iy zn+1) =1l&
Vi 2 € {0, 1) A (21 = D)V ooV (@0 = D)V (201 = 0)).

In other words, py , = {0,1}"\ {0"}, p_ ., = {0,1}"F1\ {O"1}.

p=01(z1,22,23) =1 &
(x1 =1)V ((x1 = 0) A (z2,23 € {0,1}) A (w2 = x3)),



p=012(21,22,23) =1 (21 =1) V ((x1 = 0) A (2 = x3)).

Class O of clones.
S = Pol (P+1) ; So = Pol ({p+17 {0}}) )

SL = Pol ({p+1, paty+2:}), SLo = Pol ({p11, paty+2,{0}}),
1S = [{(z + 1)(mod 3)}] = Pol ({p+1,p+}), T =Pol({p41,pr}),
C =Pol ({p+1,{0,1}}), D =Pol ({p41,p-£01}),
M = Pol ({p+1,p<}), DM =DNM, DN = Pol ({p11,pn5,0N})
TD=TND, TM=TNM, TN =DNAT,
L2 = Pol({p+1, praye=}), TL2=L2NT,
Co=LyNM, TC;=ConT, Js=[{z}].

Note that all clones from the class © were already found in [9].

Relations in II. We will need the following notation to define the classes
®and T. Let m € N, n € Ny. By D' we denote the set of all tuples
(A1,...,A,) such that Ay,... A, C {1,2,...,n}, A4 U...UA, =

{1,2,...,n}.Incaseof n = 0Owehave A} = Ay =... = A4,, = 2.
Put D= |J D" Letus define several binary relations on the set D.
m—+n>3
Suppose

(A),... AL ) e D" (Ay,...,Ay) € DM

Relation ~. Let
(AL, ALY = (Ar, ... Ap)

iff m" = m, n’ = n, and there exists a permutation o : {1,2,...,n} —
{1,2,...,n} such that A; = o(A;) forevery i € {1,2,...,m}.
Relation <!. Let
(A}, ... AL ) S (AL .. A)

)y Lim/
iffm’ >m,n <n,m+n =m+n, A, = A, N {1,2,...,n'} for

ie€{l,2,....m},Al =0 foric {m+1,m+2,...,m'}.
Relation <2. Let

(A, AL SP (A AR

m/’



iff m" < m, n’ = n, and the set {1,2,...,m} can be divided into non-

overlapping nonempty sets K1, Ko, ..., K,,,» such that A; = |J A; for
JEK;
everyi € {1,2,...,m'}.
Relation <3. Let

(A, AL B (Ar . A

iff m' =m,n’ =n, A, O A; foreveryi € {1,2,...,m}.
Relation <. Suppose Q, Q' € D, then put Q' < Q iff
30,305,305 (2 B3 AQ <2 QA D <LOQLAQ ~ Q).

The proof of the following lemma is rather simple, but cumbersome. That
is why we omit the proof and refer the reader to [12].

Lemma 1.1. The binary relation < is transitive and reflexive.

Hence the binary relation < determines a quasiorder on the set D.

Note that (&, &, @) < (A4y,..., Ay) forevery (Ay,...,A,) € D.

To each (Ai,..., Ay) € DI we assign the predicate w4, . 4, € Rg”*”
such that

7TA1,“.7A,,L(331, ey Tmy Y1y - - 7yn) =1

iff the following conditions hold:

1 Vi(z; =1V (2, =0A (Vj € Ai : y; €1{0,1})));

2. atleast one of the values x1, ..., Zm, Y1, ..., Yn is not equal to O.
It easy to check that gy . &y = pv,n forn > 3.
——

n

By II"" we denote the set of all predicates 74, 4,, € R5"™" such that
(Al, ... ,Am) S D:ln

Putll! = |y 41D, = U 1™, 11 = YII' Tt can be easily
3<m+n<l n<l,m+n>3 l
shown that we have a one-to-one correspondence between elements of D

and elements of II. Then, the binary relations ~, <!, <2, <3, < define the
corresponding binary relations on the set II. For example, the binary relation
< on the set IT is defined as follows

7TA'11-~~7A;”/ ,S TAL,...,Am < (All, ceey lm/) S (Al,. .. ,Am)



We say that predicates p; and py from II are equivalent if p1 < po and
p2 < p1. It can be easily checked that two predicates are equivalent iff one
can be obtained from another by a permutation of variables. Obviously, the
quasiorder < generates a partial order on the set of the equivalence classes.
The quasiorder < on the set IT up to arity 4 is shown in Figure 1 by a Hasse
diagram for the corresponding partial order.

T{1,2,3}

T{1}.{2}

T{1,2},2

T{1,2},{1,2}

T{1},2,9

{1y {13{1}

Ts,0,9,9

T, 0,0

FIGURE 1
Quasiorder on the set IT up to arity 4

We say that a set F' C 11 is a downset if
Vpe FVp ell (pff Sp= p €F).

By II we denote the set of all nonempty downsets of II.
Class @ of clones.
Forn > 2

a, = Pol ({P—i—lyﬂ\/,n}) ) A, =Pol ({p-‘rlv pt/,n}) )



anM = a, N M,

anN = Pol ({p+la p\/,n7pN}) 5

Ao = ﬂaia

i>2

aooM = ﬂ aiM,

i>2

aOCN = ﬂ aiN,

i>2

aP = Pol ({p41,p-2}),
aPN = Pol ({p41,p-2,on}),
aP; = Pol ({p41,p5 .2, pw})

Forn > 2

aPn = aP1 n POI(TF{LQW.)”}),
aP. = ﬂ aP;,

i>1
aQ = Pol ({p41,p=01}),
aW = Pol ({p+1, p=012}) ,

AnM = An N M7
AN = Pol ({ps1, 0% 0 })

A =[] A

i>2
A M = ﬂ A M,
i>2
A N = ﬂ AN,
i>2

AP = Pol ({p+1’/)*—>,2}) )
APN = Pol ({p11,05 2. /N }) -
AP; =Pol ({ps1.0%, 2,0l }) -

AP, = AP; N Pol(ﬂf1727,,.,n})7
AP, =[] AP;,

i>1
AQ =Pol ({p41.p= 01}) ;
AW = Pol ({p+17p*:,012}) :

Note that many clones from the class ® were already found in [9]. Pre-
cisely, only clones aP,,, AP, forn > 1, and clones aP,,, AP, aQ, AQ

are néw.

To define the class T, for I’ C II we put

Clone(F) = Pol (F U {p11,pw}).

Clone™ (F) = Pol (F* U {p+1, 00 }) -

Class T of clones. Suppose F' € ﬁ, then

Clone(F'), Clone*(F) € T.

There are no other clones in Y.

Theorem 4.4. Suppose Fi, Fs € ﬁ, then

Clone(Fy) C Clone(Fy) <= Fy D Fs.

10



FIGURE 2
The lattice of the clones.

Corollary 1.2. Suppose Fy, F5 € Il and Fy # F, then
Clone(F) # Clone(Fz).
Theorem 4.7. OUDUTY is the set of all clones M such that M C Pol (p41) .

It is hardly possible to draw a lattice that has continuum cardinality on a
picture, but we tried to do this in Figure 2. There we draw all clones from the
classes © and @, and also the following clones from the class Y. Forn > 3
put

anpme = Clone(II" N1Iy)

anToo = Clone(II™)

Ao = Clone™ (II" N I1y),
A, = Clone™ (II"),
A 7o = Clone* (Ily),
A 7o = Clone™(II),

asomg = Clone(Ily),

AsoToo = Clone(I)

11



agny = Clone(W{l}’{l}), A37T1 = Clone*(ﬂ{1}7{1}),
agmy = Clone(7f1},5), Asgma = Clone™ (71} o).

Clones from the class © are located in the middle part of the picture. As
mentioned above these clones are self-dual with respect to the transposition
0. Clones from the classes ¢ and T are divided into two symmetric parts,
which are dual to each other with respect to the transposition o. In this paper,
we usually refer to the clones from the left-hand part of the picture.

Two vertices M7 and My of the graph are joined by a solid line and M,
is located above M, iff My C M; and there does not exist a clone M’ such
that Ms C M’ C M. Two vertices M; and M, are joined by a dotted line
and M is located above M, iff My C M, and the interval [Ms, M;] is a
countable chain.

In some cases we use a dotted ellipse. Dotted ellipses in the left-hand part
of the picture represent the intervals [a, 7T, an7o] for n > 4, and the interval
[200 o0, 2coTo]. As it follows from Corollary 1.3, the interval [a, 7o, an7o)
is finite for every n > 4; but these intervals are too complicated to be drawn
on a picture. By Theorem 4.29 the interval [a.Too, 8000 has continuum
cardinality. In the Hasse diagram of this lattice for every clone from the
interval [a, oo, an7o| there exists a unique line to the lower layer. Also, for
every clone aP,,, where n € N, there exists a unique line from the interval
[200 oo AnoTo] to this clone.

To make things more clear we draw the interval [a47 ., a37p] on a sepa-
rate picture (see Figure 3). There you can see the lattice of clones from the
class Y that can be defined by predicates of arity 4. These are all clones from
T containing the clone agm..

A finite set F' C II is placed next to every vertex of the graph in Figure 3.
This means that the clone Clone(F’) corresponds to this vertex. Note that the
set F' is not a downset of II and hence it does not satisfy the definition of the
class Y. Nevertheless, it is easy to prove for the downset | F' generated by
F' that Clone(F') = Clone(] F'). This follows from Lemma 3.25 and the
Galois connection defined in Theorem 2.1.

If a clone is drawn in both figures, then we give in brackets the name of
this clone in Figure 2. Note that the lattice in Figure 3 is just the dual of the
lattice of downsets of the poset in Figure 1. We hope that now Figure 2 is
more clear.

So, pairwise inclusion of clones from © and @ into each other is shown
schematically by a graph in Figure 2. The next three theorems describe the
inclusion of clones from T into clones from ® and clones from @ into clones

12



We,z,z(a:aﬂo)

13,413 (asm1) (o)
To,o,0,25(24T0

{1}, {1}, T2,9,9,9

T{1}y.{1}.{1}

T{1,2}>, T{1},{1}.2

‘ T{1,2},T{1},2,2

T{1,2},{1,2}» T{1},2,0

T{1,2},{1,2}

T{1,2,3}
T{1},{2}>» T{1,2},2

T{1,2,3}, T{1},{2} (AaToo)

FIGURE 3
Clones from Y containing asm

from Y.

Theorem 4.8. Supposet > 3, F € ﬁ, then Clone(F) C ayN iff eithert = 3
or F g It~ 1.

Theorem 4.12. Suppose I' € I, then aPy C Clone(F) iff F C I1;.

Theorem 4.13. Suppose F € I, then aP ., C Clone(F).
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1.3 Bases for clones

We say that a clone M C Ps is finitely generated if there exists a finite set
My C M such that M = [My]. A set My is called a basis for M if M = [Mp]
and for every M’ C My we have M # [M'].

By + we denote the addition modulo 3.

We use the following notation for functionson Fs: T,z Vy,z Ay, x By
are negation, disjunction, conjunction and addition modulo 2 respectively. To
reduce formulas in some cases A is omitted. For n > 2 we put

n+1
hn(fﬂl, . ,.’EnJrl) = \/ 1.0 o Lj—1Ti41 -+ - Tp41,
i=1

hy is dual to h,, with respect to the transposition on Es.

We want to partially extend some functions on Es to functions on Es3 in
a natural way. Let f € Py with f(c,c,...,c) = cforall ¢ € E3. Then
we define f on tuples (aq,...,a,) with {a1,...,a,} C {d,d + 1} for some
de E3 by

flar,...;an) = flar —d,...,a, — d) +d.

For all other tuples we leave the function undefined. Obviously, if f is a
binary function on Fs, then the extended f is a completely defined function
on E3. Moreover, it can be checked that the extended f is a self-dual function.
By right(z,y) we denote the extension of  \VV y, by le ft(z,y) we denote the
extension of z A y. That is,

z, ife=uy

1, if{z,y}=1{0,1}
right(z,y) = if oy} = {01}

2, if{z,y} ={1,2}

0, if{z,y}={0,2}.

z, ifx=uy;

0, if{z,y}={0,1};
ey — A0 vk =0.1)

1L if{z,y} ={1,2}

2, if{z,y} ={0,2}.
These two functions are used widely in the paper because all clones from the
classes ® and Y contain either right or left. Note that these functions are
not associative.

Suppose (a1, ...,a,) € EY, then by Two(aq,...,a,) we denote the set

of all b € Ej3 that occur in the tuple (a4, . .., a,) more than once. For exam-
ple, Two(0,1,2,1,0,1) = {0, 1}.

14



To define bases for clones we need to define several functions. In the right-

hand side of the following definitions, the functions on £5 mean the extended
functions.

21 VaaVas, if |[{zy,z,23} <25
r4(T1, T2, T3, 24) = .
Z4, if |{z1, 22,23} = 3.

I \/:ZZQ, if|{l’1,1’2,$3}| SQ,
T3(I17I2,l’3) = .
1, if |[{z1, 22,23} = 3.

x1 Vg, if|{z,x2,25} < 2;
91(351;1‘2755'3) = .
T1 N\ T2, 1f|{x1,$27333}|:3-
For n > 2 we put

1 V... Vaner, if{z,..,2ap0} <2
hfl(xl,...,xn+1), if‘{ﬂ?l,...,l‘n_;'_l}‘ = 2and
gn($1>~--7$n+2) =
{1, g1, Tnga} = 3
1, otherwise.

r1 Vg, if|[{zy, 22,23} <2
sn(z1,22,23) = .
T3, 1f|{l‘1,$2,.’173}| =3.

z, if {z,y,2} <2
ps(,y,2) = .
y, if {z,y,2} =3

P O N RIS
pbso\x,Y,z) =
’ z+1, if|{e,y 2} =3

plus(x,y,z) = i
x, 1f|{]},y,Z}| :3

pluso(z,y, z) =
z+1, 1f|{x,y,2}|:3

m(:c, Y, Z) -

hQ(Z,yvz)» 1f|{x,y,z}| < 2;
x, if |[{z,y, 2z} = 3.

hg(l',y,Z), 1f|{l‘7y72}| SQ’
mO(m7yaZ): .
T +1, if [{z,y,2} = 3.

15



x1 V xoxs, if|[{xq1,x0, 23} <25
f;:o(xhx%xf}):{ o if {1, 22, 23}

Ty, if|{$1,£2,$3}| = 3
Forn > 3 put
x1, if Two(z1,...,2ny1) = {0,1,2};

(@i, s Tpg1) =S aVvd, if Two(zy,...,Tny1) = {a,b};

a, if Two(z1,...,2n+1) = {a}.

x1 Vo3, if [{x1, 20, 23} < 2

foo (w1, w2, 23) = {

I, if|{$1,$2,$3}| :3
h*(ml,...,x 1), if|l‘1,...,$ 1 SZ,
fgz(xl)...’xn+1) — n n+ . { n+ }|
x1, lf|{l‘1,...,$n+1}| = 3.

x1 Vaaws, if {21, 20, 23,24} < 25
so(x1, T2, 3, 24) = < X9, if [{x1, x2, x5, 24}| = 3and x5 = x3;

@1, otherwise.
Theorem 4.16. The clones of the class © have the following bases:
S = [{z +1,right}] = [{z + 1, left}],
So = [{2 + 2y, right}] = [{2z + 2y, left}],
SL = [{22 + 2y, 2+ 1}] = [{20 + 2y + 1}], 1S = [{z + 1}],
SLo = [{20 +2y}], T = [{22 + 2y, ps}],
C = [{plus, right}] = [{plus, left}],
D = [{plus, mo}] = [{pluso, m}] = [{plus, m,pso}],
M = [{right,left}], DM = [{m,pso}] = [{mo,ps}],
DN = [{mo}], TD = [{m,plus}], TM = [{ps,m}],
TN = [{m}], L2 = [{plus,pso}] = [{pluso}],
TLz = [{plus}], Cz2=[{pso}], TCz=[{ps}], Js=[{z}]
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As it follows from the definition of the classes T and ®, the clones in the
left part of Figure 2 are dual with respect to the transposition o to the clones
in the right part of the figure. That is why we give bases only for clones from
the left part.

Theorem 4.17. The clones of the class ® have the following bases:
ag = [{f5°,m}], azM = [{ps,right,m}], a2N = [{m,right}].
Forn >3
an = [{f5%, 71 = {/5™, fo'},
anM = [{f7,ps}] = [{fo'}], anN = [{[f7,sn}],
aoe = {5}, aeM = [{£2,ps)], anN = (£ sn}].
Forn >1

aP = [{right,ps}], aPN = [{SN}]v abP, = [{gn}]a

aPo = [{r3}], aQ=[{rs}], aW = [{right}].

Theorem 4.18. For n > 3 and m > 1 the clones of the class '\ have the
following bases:

Ao = [{f;:o}], AnToo = [{f:}]a

asemo = [{s0}], anmo = [{s0, f7'}],
Clone(Tly,) = [{gm, f7°}], Clone(Ily N1II") = [{g1, f' }].

To define bases for all clones from the class T we will need the following
notions. As mentioned before two predicates p; and po from II are equiva-
lent if p; < po and po < pp. Thus, all predicates from IT are divided into
equivalence classes. The set of all equivalence classes we denote by Erj. By
p we denote the equivalence class that contains p € II. Then, the quasiorder
< generates a partial order on the set Ery. We write p; < pa, if p1 < p2 and
p1 # Do N

Suppose F' € II. Put

Bound(F) == {p € En | p € F,V6 € En(6 < p= 6 C F)}.

A downset F' can be regarded as a subset of Ery, then Bound(F) is the set of
all minimal elements of the complement of F' in Eyj.

A set of pairwise incomparable elements is called an antichain. Let By be
the set of all antichains of Ep; excluding the one that consists of the bottom
element T(g o &y only.
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Theorem 4.19. Bound : IT — B is a bijective mapping.

It follows from this theorem and Theorem 4.4 that if we find an infinite
antichain in Fry, then we prove that T contains a continuum of clones. As an
example, the following set can be considered

{%A1,A2,~~,Am m>2,Vi A; = {1, 2,... ,m} \ {Z}}

Suppose F € II, 5 € Bound(F'). Put

F;=FU U 5,
seBound(F)\{p}

R=Fu |J ..
5eBound(F)

Theorem 4.20. Suppose M C Clone(F), F € II\ {IL, Iy, IT;, I, I3, . . .},
and g : Bound(F) — M is a bijective mapping such that for every p €
Bound(F) we have

g(p) € Clone(F3) \ Clone(Fy).
Then M is a basis for Clone(F).
Corollary 4.21. Suppose M € © U® U Y, then M has a basis.

Corollary 4.22. Suppose F € ﬁ, then Clone(F) is finitely generated iff
Bound(F) is finite.

Corollary 4.23. Suppose F € 11, |F| < oo, then Clone(F) is finitely gener-
ated.

1.4 Some properties of clones from ®, &, and Y

The relation degree d(A) of a clone A C P is the smallest i € Ny such that
A = Pol(S) for some S C R%, that is,

d(A) = min{h | 3Q C RY : Pol(Q) = A}.
Put d(A) = oo if A # Pol(Q) for every finite set Q C Rs.
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Theorem 4.25. Suppose M € © U ®, then

2, if M € {8, So,T,C,M,D,DM, DN, TD, TM,
TN, 1S,J3};
3, if M € {SL,SLo, L, TL2, Ca, TCz, aP, aPN,
400 aP;,aQ,aW, AP, APN, AP;, AQ, AW},
n, ifn>2and M € {a,,anaM,a,N, A,,, A,M, A ,N}

n+1, ifn>2and M € {aP,, AP,};
00, if M € {ax,ascM,aN,aP,, A, AccM,
A NAP_};

Theorem 4.26. Suppose F' € ﬁ, F # {13 0.2}, then

max{m+n |IIMNF # @}, if|F|<oo;

(0. ¢]

d(Clone(F)) = {

, otherwise.

d(clone({ﬂ'g,g7g})) = 2.

It follows from Theorem 4.25 and Theorem 4.26 that our description of
clones is optimal. That is, these clones cannot be defined by predicates of
smaller arities.

Further, let L3 be the set of all clones in © U ® U Y. For F' € L3 we put

LY(F):={F' els | F C F'},

LY(F):={F' e€ls | F' C F}.
That is, Lg(F ) is the principal filter generated by F', and Lé(F ) is the princi-
pal ideal generated by F'.

Theorem 4.30. Suppose M € © U ®, then

=Ny, M € {aP,aPN,aP,aP5,aPs3,...,
AP,APN,AP; AP, AP;,...};

=28 ifM €{S,S0,C, M, a.,a,.M,a,N,
A, AccM, A N}

orM € |J {an,anM,a,N, A, A,M, A,N};
n>2

L5 (M)

< 00, otherwise.
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Theorem 4.29. Suppose F' € fL then

Ry .
L% (Clone(F)) :{2 ., ifF #10

5, if F =1L
Theorem 4.38. Suppose M € © U ®, then

= NOa lfM € {027TCZaaOovaOOMvaOONaapvaPNa
Ao, A.M, A N,AP, APN}
ILL(M)| or M € |J {aPn, APy},

n>1
= 2N07 lfM S {J37aPOO7aQaaW7APOOaAQ7AW7};

< 00, otherwise.

Let Iy bethesetofall ma, .. a,, € IIsuchthat A, = A;UA;U...UA,,
for some i € {1,2,...,m}. In other words, if m4,, . 4, € III" NIy, then
there exists ¢ € {1,2,...,m} such that A; = {1,2,...,n}.

Theorem 4.37. Suppose F € ﬁ, then
< oo, If|F| < oo

ILL(Clone(F))| { = Ny, if |F| = oo, F' C (II,, UIly ) for some n € N;
=280 otherwise.

Corollary 1.3. |L} (a7 )| < oo for everyn > 3.

It follows from Theorem 4.38 and Corollary 1.3 that [L}(aPy,)| = R
for every m > 1, |}Lg(an7roo)\ < oo for every n > 3. Roughly speaking,
this means that a continuum of clones is located near the vertex a. mo in
Figure 2.

2 NECESSARY NOTIONS

2.1 Closure operator for predicates and Galois connection
By o}, we denote the predicate from R;, given by

o (r,y) =1<—=x=y.

By false we denote the predicate of arity O that takes on value 0, by true we
denote the predicate of arity O that takes on value 1.
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Let us give a short definition of the closure operator [ ] on the set Ry. The
reader can find a rigorous definition in the monograph [7]. Suppose S C Ry,
then by [S] we denote the set of all predicates p € Ry, that can be presented
by a formula as follows

px1,. .y xn) =Ty p1(F1 1, s 2imy ) Ao APs(Zs1s ey Zomg)s

where [ > 0, p1,...,ps € SU{false,o; }, zij € {x1,..., 20,01, .., Ui}
That is a formula over the set SU{ false, o}; } from first order predicate logic,
which only uses the connective A and existential quantification. The closed
subsets S C Ry, with respect to the closure [ ] are called relational clones.

Theorem 2.1. [1, 2, 7] Let IL(Py) be the set of all clones of Py, L(Ry) be
the set of all relational clones of Ry,. Then the mappings

Inv : ]L(Pk) — ]L(Rk),

Pol : L(Ry,) — L(P:)

are mutually inverse bijective mappings, which reverse the partial order C,
1. e., it holds

VA,B € L(P:): AC B = Inv(B) C Inv(A),
VS, T € L(Ry) : S € T = Pol(T) C Pol(S).

So we have a one-to-one correspondence (which is a Galois connection)
between clones and relational clones.

2.2 Auxiliary definitions
By ar(p) we denote the arity of a predicate p. A predicate is called trivial
if it takes value 1 on every tuple. We say that two predicates p; and po are
equivalent with respect to the set of predicates S if p2 € [S U {p1}] and
p1 € [SU{p2}].

We say that the i-th variable of a predicate p € R} is dummy if for every
a1, as,...,an,b € Ey we have

p(alv"'7ai—17ai7ai+1a"'7an) = P(a17~-- 5ai—1abaai+17"'aan)'

Suppose p € R}, i < n, then we put VarValues(p, i) = {a(i) | a € p}.

We say that p’ € RY is obtained from p € RY by a permutation of vari-
ables if there exists a permutation o : {1,2,...,n} — {1,2,...,n} such
that

pl(mlax27 cee 7xn) = p(xa(l)axU(Q)a s 7‘:60'(”))'
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We say that p/ € R} is obtained from p € R} by shifting of variables if
there exist a1, as, ..., a, € E3 such that

p/(.’El,ZL'Q,...,LUn) = p(xl +a,x2+az,...,Ty +an)

Lemma 2.2. Suppose p' € RY is obtained from p € R} by shifting of vari-
ables, then predicates p and p' are equivalent with respect to {p1}.

Proof. Suppose p'(x1, 2, ...,2,) = p(x1 + a1,T2 + as, ..., 2T, + a,). Put
oi(z,y) = oy (z,y) if a; = 0; oi(x,y) = py1(x,y) if a; = 1; 04(w,y) =
p+1(y, x) if a; = 2. Then,

o1,y @) =Ty .o Fyn p(Y1s -+, Yn) /\/\Ui(:ti,yi).

K2

O

Suppose p € Rs, then by Shift(p) we denote the set of all predicates that
can be obtained from p by shifting and permutation of variables. For S C Rj
put

Shift(S) = | J Shift(p).
peES
Using Lemma 2.2, we get Shift(S) C [S U {p41}] for every S.

Suppose S C Ry, then by And(S) we denote the set of all p € Ry, that

can be presented by a formula of the following form:

plxr, .. xn) =p1(Z11, -5 20 ) A e o A Ps(Zs1y oy Zoms)s

where s > 0, p1,...,ps € S, zi; € {x1,...,2n}, 2 # 2y for all
1,7,1,j # l. Here we suppose that p is a constant 1 for s = 0.

Suppose p € R}, 1 < i < n. By Strike(p, i) we denote the predicate
o€ R271 such that

U(x17x27 s 71771—1) = Ely P(l"h sy Ti—1,Y, Ty o et axn—l)-

If p/ = Strike(p, i), then we say that p’ is obtained from p by striking the i-th
row. Suppose p € Ry, then by Strike(p) we denote the set of all p’ that can
be presented by a formula of the following form:

(1,22, .., 2n) = Jy1Iy2 ... Iy p(21,22, -, 2m)

where [ > 0, z1,22,...,2m € {&1,...,Zn,Y1,..., U}, 2 # zj fori # j.
For § C R3 we put
Strike(S) = U Strike(p).

peS
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Lemma 2.3. Suppose p € Ry, c € Ey, and

p/(xlw"»xiflaxi{»la"'7xn) :P(mla---7$i71a07$i+17~-~,$n)-
Then p' € [{p,{c}}]-
Proof. p'(x1,...,%i—1,Zix1,...,2n) = 32 p(w1,...,2,) A (T5 = C).

O

Suppose « is a word. Then by |a| we denote the length of «. Suppose
|| > 1, then we put

l(@) = alla] =1+ 1) ... a(ja| = Da(|al),
Ji(e) = a()a(2)...al).
Suppose s € N, then we put o® = aax... .
—
Suppose p1, p2 € RY; we say that p; < ps if for every aq,...,a, € Ej
pl(ala BERE) (ln) < pQ(ala R an);
we say that p1 < ps if p1 < p2 and p1 # pa.

2.3 Essential predicates

A predicate p of arity n is called essential if there do not exist predicates
P1,P2,---,p1 such that ar(p;) < n for every i € {1,2,...,1} and p €
And({p1, p2,---,pi}). We put by definition that false and true are essen-
tial predicates. So, p € Ry, is called essential if p cannot be presented as a
conjunction of predicates with arity less than the arity of p. The set of all
essential predicates of arity n is denoted by }Ni}j Let

Ry = J Ry
n>0
A tuple (a1, as, ..., ay,) is called essential for a predicate p € R} if

p(a1>a27"'aan) =0
and there exist by, ba, ..., b, € Ej such that forevery i € {1,2,...,n}
p(a'lv"'7ai—1;bi7ai+17"'7an) =1

Let us define the predicate p for every predicate p € R}, where n > 1.
Put 0; = Strike(p, 7). By p we denote the following predicate:

(1, xn) =01(T2, ..., ) A Aop (T, .o, Tp—1).
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Lemma 2.4. Suppose p € R}, where n > 1. Then the following conditions
are equivalent:

1. pis an essential predicate;
2. p#p;
3. there exists an essential tuple for p.
Proof. Let o; = Strike(p, 7). We have
plar,...;xn) =01(T2, ...y xn) Ao Aop(T1, .oy Tn—1).

Let us prove that the first condition implies the second condition, the second
implies the third and the third implies the first.

Suppose p is essential, then it follows from the definition that p # p.

Suppose p # p. It can be easily checked that p < p. Then there exists
(ai,...,an) such that p(aq,...,a,) = 1, p(ai,...,a,) = 0. By the def-
inition of the predicates o1, ..., 0,, for every i there exists b; € E} such
that

p(al, Y ¢ 7 I bi,ai_,_l, “e ,an) =1.

Hence, the tuple (ay, ..., a,) is an essential tuple for p.

Suppose (a1, ..., ay) is an essential tuple for p. Assume that p is not es-
sential. Then there exist p1,...,p; € Ry such that p € And({p1,...,p1})
and ar(p;) < n for every j. Without loss of generality it can be assumed that

plr, ..., xn) =p1(x1, .. xn) A A pr(z, .o )

and every predicate p; has at least one dummy variable. Since we have
play,...,an) = 0, there exist j € {1,2,...,1} and ¢ € {1,2,...,n}
such that p;(aq,...,a,) = 0 and the i-th variable of p; is dummy. Hence,
there is no b; such that p;(ai,...,a;-1,b;,ai41,...,a,) = 1. Therefore,
(a1,as,...,ay,) is not an essential tuple. This contradiction completes the
proof.

O

Lemma 2.5. Suppose p € Ry, then p € And(Strike(p) N Ry,).

Proof. The proof is by induction on the arity of p. If ar(p) = 0, then p is
essential and the proof is trivial. If p is an essential predicate, then the proof
is trivial. Suppose p is not essential, o; = Strike(p, 7). Then by Lemma 2.4

p(x1, 22, . xn) =01(T2, ., Tp) Ao Aop (1, -+, Tp—1).
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By the inductive assumption, we have o; € And(Strike(o;) N Ry,). Hence,

p € And <U And (Strike(oi) N Rk)> C And (U Strike(o;) N Ek> .
i=1 i=1

Since Strike(;) C Strike(p) for every i, we have p € And(Strike(p) N R},).
O

Suppose S C Ry,n > 1. A predicate p € R} is called maximal with
respect to S if there exists an essential word (tuple) « for p such that the
following condition holds:

Vo e Ry (0 >pAola)=0)=0c¢[{ptUS].

Thus, p is a maximal predicate among all predicates o € [{p} U S] N R}
such that o (o) = 0. The word « is called a key word for p. By definition we
put that predicates true and false are maximal with respect to S for every
S C Ry.

Lemma 2.6. Suppose p € Ry, S C Ry, then there exists W C [{p} U 5]
such that

1. every o € W is a maximal predicate with respect to S;
2. ar(o) < ar(p) forevery o € W;
3. p € And(W).

Proof. The proof is by induction on the arity of p. Let n = ar(p). If n = 0,
then p is maximal with respect to S and the proof is trivial.

Let aq, g, . . ., oy be all essential words for p. Forevery i € {1,2,...,1}
let 6; be a maximal predicate such that §; € [{p} US| N R}, §; > p, and
0;(a;) = 0. Obviously, 0; exists. Let o; = Strike(p, ). It can be easily
checked that we have the following equation

p(x1, ..y xn) =01(21, oy Zp) A A (T, T)A
o1(xa, ., Tp) Ao Aop(21, .o, Tp—1).

By the inductive assumption 0; € And({pj1,...,pjp,;}), Where p;; is
a maximal predicate with respect to S, p,;; € [{o;} US| C [{p} U S] and
ar(p; ;) <n— 1. Hence

p€ANA({01,. .., 01, P11 s Plprse- s Prls-- s Prpnt)-
This completes the proof.
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2.4 Essential closure
Aset S C ﬁk is called essentially closed if the following conditions hold:

1. 0, false € S;
2. If pis obtained from p; € S by a permutation of variables, then p € S
3. If p € Strike(S) N Ry, then p € S;

4. If p1 € Sand p(x1,22,...,2,) = p1(21, 21, T2, ..., Ty), then either
pé¢ RporpeS,

5. If p; € Sand p(x1,x2,...,2n—-1) = 3z p1(T,2,21,T2, ..., Tp_1),

then either p ¢ R or p € S;

6. If p1,p2 € S, m < n, and

p(x1, %9, ) = p1(x1, T2, ..., Tp) A p2(T1, T2, ... T,
then either p ¢ Ek orp €S,

7. If p1,p2 € S, ar(p2) = 1, and

o1, 29, .. ) = Jz p1(x, 21,22, .., Tpn) A pa(2),
then either p ¢ Ek orp €S,
8. If2 <1<k, p1,....p0 € S,ar(p;) =n;+1 > 2foreveryi €
(1,2,...,1},
p(xl,lw ey Llmgy ey Ll Ty 7ml,nl) =
o pi(z, 10, T ) A AP(E, T, Ty,
where all variables are different; then either p ¢ Ry or peSs.
Lemma 2.7. [Q N Ek] = Q for every relational clone QQ C Ry,.

Proof. The inclusion [Q N Ek} C @ is trivial. Let us prove the inclusion
[@nN Ek] D Q. Suppose p € Q, then by Lemma 2.5, it follows that p €
And(Strike(p) N Ry,). Since Strike(p) C [{p}] and And(T') C [T] for every
T C Ry, we get p € [[{p}] N Rx] C [@ N Ry]. This concludes the proof.

O

The following theorem is proved at the end of this section.
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Theorem 2.8. A set S C Ry, is essentially closed iff [S] N Ry = .

It follows from Lemma 2.7 that an arbitrary relational clone ) can be
uniquely determined by the set @ N Ry, Moreover, it follows from Theo-
rem 2.8 that ) N }~2k is an essentially closed set of predicates. So, we have a
one-to-one correspondence between relational clones and essentially closed
sets of essential predicates. Thus, to describe all clones in three-valued logic,
it is sufficient to describe all essentially closed sets of essential predicates.

Let us consider a simple example. Suppose p € R? defines a linear or-
der on the set Ey. Let p'(z,y) = p(y,z). It is easy to check that the set
{o%, false,true, p, p'} is essentially closed. Hence, Pol(p) is a maximal (or
precomplete) clone in P. Note that we prove this without using functions at
all.

The following lemmas will be used in the proof of Theorem 2.8.

Lemma 2.9. Suppose p,p1,...,p1 € R, ar(p;)) =n; +1>2,1 >k, and

p(Z‘Ll, . ,1‘17”171‘271, e ,l‘27n2, e ,xl,l, . ,.Ifl,m) =
Ely pl(y’ ml,lv LI} ml,nl) /\ e /\ pl(y7xl,17 e 7xl,nl)~
Then p is not an essential predicate.

Proof. Assume the converse. By Lemma 2.4, there exists an essential tuple ~y
for p. Suppose ¥ = ajp . .. oy where a; € E} foreveryi € {1,2,...,m}.
Put
C; ={ce€ Ey | pi(ca;) = 1}.
Since ~y is an essential tuple, we have
cinCyn...NC =9,
Dj = ﬂ C,L 7£ <.
i#]

Hence, D; N D; = @ for every 4, j, i # j. Since D; C Ej, for every i, we

have [ < k. This concludes the proof.
O

Lemma 2.10. Suppose S is an essentially closed set of predicates, py € S,
p € Strike(pg). Then p € And(S5).

Proof. By Lemma 2.5 and using item 3 of the definition, we obtain

p € And(Strike(p) N Ri) € And(Strike(pg) N Ry,) € And(S).
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Lemma 2.11. Suppose p € R}, o, = Strike(p, i), predicates p and o\ are
not essential. Then

px1,. . xn) = 0o(z1, 23,y Tp) Ao Aop(T1, .. Tp—1).

Proof. Let oy ; = Strike(o,¢ — 1). Using Lemma 2.4 for p and o we get

P, Tm) =
O'1($2,...,$n) /\ag(xl,xg,‘..,xn) VAN Adn(.’ﬂl,...,l'n,l) =
n
/\(O'Z'(J?h...,Ii,1,$i+1,...,xn) AUl,i(mg,...,xi,1,$i+1,...,J}n)).

=2

Hence the following equation completes the proof.
oi(x1, T2, Tp1) NO1i(T2, .. 1) = 03(21, T2, .., Tp—1)-
O

Lemma 2.12. Suppose S is an essentially closed set of predicates, py €
And(S), and

p(xthv e ,x’n) - Po(ffl,xl,x% cee 71.77,)'
Then p € And(S).

Proof. The proof is by induction on ar(pg). By the condition, po can be pre-
sented as a conjunction of predicates d1,...,d5 € S. Hence, we just need
to prove that if we identify two variables in d; we obtain a predicate from
And(S). Therefore, without loss of generality we can assume that py € S.

If p is essential, then the proof follows from item 4 of the definition of an
essentially closed set. Suppose p is not essential. If ar(p) = 1, then obviously
p € And(S). Suppose ar(p) > 2. By Lemma 2.4 we have p = p. Let o; =
Strike(p, 7). Let us show that o; € And(S) forevery j € {2,3,...,ar(p)}.
Let €; = Strike(po, j + 1). By Lemma 2.10 we have ¢; € And(S). By the
inductive assumption we get 0; € And(S) forevery j € {2,3,...,ar(p)}.

Assume that o is essential. It follows from item 5 of the definition that
o1 € S.Hence p € And({01,02,...,0a(p)}) C And(S).

Suppose o7 is not essential. Then using Lemma 2.11 we obtain that p €
And({o2,03,...,0a(p}) € And(S). This completes the proof.

O
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Suppose S C Ry By AF(S) we denote the set of all formulas of the
following form:

P1(Z115 s 21 ) Ao e APs(Zs1y oy 2o )s

where p1,...,ps €5, 2 ; # 2y foralli,5,1,5 # L.

By Seq we denote the set of all infinite sequences (ag, ai, as,...) such
that a; € Ny for every i € Ny, and there exists 7 € Ny such that a; = 0
for every i > j. Let us define a mapping ¢ : AF(S) — Seq. Put p(®) =
(ao, a1, as,...), where a; is the number of predicates of arity ¢ in the formula
®. Let us define a linear order on the set Seq. We say that (ag, a1, as,...) <
(bo, b1, ba, . ..) if there exists m € Ny such that a,, < b, and a; = b; for
every i > m.

Lemma 2.13. Suppose @ # W C Seq . Then there exists a minimal element
in W.
Proof. Consider v € W. Suppose that (i) = 0 for every ¢ > n. Let
W, ={aeW|Vi>n(ai)=0)}. Fori € {0,1,2,...,n} we put
b; = min{a(i) | « € W;},
Wi_1= {Oé e W; | Oé(l) = bz}

Obviously, W; is not empty for every ¢ € {0,1,2,...,n}. Therefore, the
sequence (bg, b1, ba,...,b,,0,0,0,...)is a minimal element in W.
O

Suppose S C Ry, 0 € And(S)NR}.By AF(o, S, x1, ..., z,) we denote
the set of all formulas ® € AF(S) suchthato(z1,...,2,) = ®(21,...,2p).

Lemma 2.14. Suppose S C Ry, is essentially closed, po € And(S), and

p(x1, ..., xy) = Jz po(x,21,...,2Tn).
Then p € And(95).

Proof. Assume the converse. Let Uy € AF(.S) be a formula with the minimal
value of ¢(¥) such that 3z Pq realizes a predicate p ¢ And(S). Let us
rename some variables in g such that every variable except x in the obtained
formula occurs just once. Note that we remain all occurrences of the variable
2 in ¥y. We denote the obtained formula by ¥. Suppose Jx W realizes a
predicate p’. If p’ € And(S), then using Lemma 2.12 we obtain that p €
And(S), which contradicts the assumption.
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Assume that p’ ¢ And(S). Obviously p(¥) = ¢(¥y). Let
UV=E,AZA... A2,

Without loss of generality it can be assumed that there exists m < r such that
E; contains x iff # < m. It can be assumed that Z; = p;(z,z;1,...,%Tin,;)
for every ¢ < m.

Assume that m < r. Let ¥y = =) A ... A Z,,. Let 3= U, realize a pred-
icate 0. Obviously, (V1) < ¢(¥). By the assumption about the minimality
of p(T) we get § € And(S). Hence, p' € And(S), which contradicts the
assumption.

Thus, we can assume that m = r.

We have three cases. First case, m = 1. By Lemma 2.10 the formula
Jdx Z4 realizes a predicate from And(S). Hence p’ € And(S).

Second case, ar(p;) = 1 for some ¢ € {1,2,...,m} and m > 2. Without
loss of generality it can be assumed that ¢ = 1. For j € {2,3,...,m} we put

p;‘(xaxj,la s a'rj,nj) = ,01(.13) A pj('r7xj,17 s 71‘j,n]‘)'

Assume that p;- is essential for every j. Then it follows from item 6 of the
definition that p; € S for every j. We put = = pi (2, 2j1,...,2)n;). Let

Uy =E5AE5A...AEL,
Obviously 3z U, realizes the predicate p’ and p(¥3) < (V). This contra-
dicts the assumption about the minimality of ¢ ().
Assume that p/; is not essential for some j € {2,3,...,m}. Let 0; =
Strike(p/;, ). By the assumption about the minimality of ¢ (V) we have o; €
And(S) forevery i € {1,2,...,n; +1}.Letfori € {1,2,...,n,}

@0 S AF(U’l, S, xj,l; e ,.’Ej_’n].),

@i (S AF(01+1, S,{E7£L'j’17 I R PR R P ,.’L’j’n].).

By Lemma 2.4, the formula ©9 A ©1 A ... A O, realizes p;-. Let U5 be
obtained from W by replacing =; by ©g A ©1 A ... A Oy, . Obviously Jz V3
realizes the predicate p’ and o(¥s3) < ¢(¥). This contradicts the assumption
about the minimality of p().

Third case, m = 2 or ar(p;) > 1 forevery i € {1,2,...,m}. If p is es-
sential then using Lemma 2.9 we obtain m < k. Hence, it follows from item 7
and item 8 of the definition that p’ € S. This contradicts the assumption.
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Assume that p’ is not essential. Let o; = Strike(p’, 7). Let us prove
that o; € And(S) for every i. Without loss of generality it can be assumed
that 7 = 1. By Lemma 2.10 the formula 3z, ; =; realizes a predicate from
And(S). Denote this predicate by o’. Let 2 € AF(o’, S, z, 21,2, ..., T1,n, )
Then we have

3%171 E'ZEl/\EQ/\/\Em:

dx (356171 El)/\Eg/\.../\Em:HJZ‘Q/\EQ/\.../\Em.

Let Uy = QAE3 A ... AE,. It can be easily checked that o(¥4) < ¢(¥)
and 3z Uy realizes the predicate . Because of the minimality of ¢(¥) we
get oy € And(S).
Hence, o; € And(S) for every i. By Lemma 2.4 we get p’ € And(S).
This contradiction completes the proof.
O

Lemma 2.15. Suppose S is an essentially closed set, then And(S) is a closed
set of predicates.

Proof. This lemma can be easily proved by combining the definition of es-
sentially closed set, Lemma 2.12 and Lemma 2.14.
O

Proof of Theorem 2.8. 1f [S] N R, = S then it is easy to show that S is
essentially closed.

Suppose S is an essentially closed set of predicates. By Lemma 2.15 we
obtain that [And(S)] = And(S). We have

And(S) C [S] C [And(S)] = And(S).

Therefore, And(S) = [S]. Now we must only prove that And(S) N Ry, C S.

Consider p € And(S) NRy. Suppose (a1, . .., ay) is an essential tuple for
p, p is presented as a conjunction of predicates pg, p1,...,p; € S. At least
one of these predicates takes on value 0 on the tuple (ay,...,a,). Hence,
this tuple is essential for this predicate. Without loss of generality it can be
assumed that (a1, ..., a,) is an essential tuple for pg. Therefore,

p(x1, T, ... xy) =

po(T1, 22, ) AP1(@115 -3 B ) A Apr(T0as e, Tiny)-
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Fori e {1,...,1} we put

p()(xlaIQ?"'vxn) = po(x17x27"'azn)7
/ /
pi(xl,xg,...,xn) = Pi_1(x17$27-~-a$n)/\Pi(xi,la---yxi,ni)-
It can be easily checked that (a1, ..., a,) is an essential tuple for every pred-

icate p}. Hence, p; is essential for every ¢. It follows from item 6 of the def-
inition that p; € S for every ¢ € {1,2,...,1}. Obviously, pj is equal to p.
Therefore, p € S and And(S) N Ry C S. This completes the proof.

3 CLONES FROM CLASSES @ AND Y.

3.1 General properties of predicates from Inv(right)
Let

By = {false,true, py1,05,{0}, {1},{2},{0,1},{0,2}, {1,2}},

[0 1
1= 0 1 y P<yPV,2, PN PW (-

By B, we denote the set of all predicates p € Inv(right) such that for
every i € {1,2,...,ar(p)} we have VarValues(p, i) C {0, 1}.

Let Main be the set of all predicates p € Rgs such that the following
conditions hold for some m € {1,...,ar(p)} :

1. VarValues(p,i) C {0,1} forevery i € {1,2,...,m}.
2. Forevery amy1,---,aar(p) € E'3 we have
p(L, . L Gty Qar(py) = 1.

So, VarValues(p,i) C {0, 1} for every i < m, VarValues(p,i) = {0, 1,2}
for every ¢ > m.

Lemma 3.1. By C [{p41,{0,1}}].

Proof. By Lemma 2.2, we have

Shift ({0, 1}) = {{0,1}, {1,2},{0,2}} € [{p41,{0, 1} }].
Also {0,1} N {1,2} = {1}, hence

Shift ({1}) = {{0}, {1}, {2}} € [{p+1,{0, 1}}].
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Lemma 3.2. Suppose D C EY*, D # &, then there existi € {1,2,...,m},
a € D, € EF'\ D suchthat 5(j) = a(j) for every j # i, 8(i) = a(i) + 1.

Proof. Let p € RY® be defined by the following condition
pla) =1<=ae€D.

Since p takes on value 0 and value 1, we see that at least one of the variables
in p is not dummy.

Hence there exist i« € {1,2,...,m}, ai,...,a, € FEs3 such that for
p(x) = plar,...,a;-1,2,4i11,.-.,0ny) We have p' # FEs. Thus there is
some ¢ € Ej5 such that p/(¢) = 1 and p'(c + 1) = 0. We put

Q=01...0;—1CAj41 .- Cm, B=0a1...0;—1(c+ 1)ait1...am.
O

Lemma 3.3. Suppose p € Inv(right), ar(p) > 1, VarValues(p, i) = Ej3 for
everyi € {1,2,...,ar(p)}. Then p € And({p+1,03 }).

Proof. The proof is by induction on the arity of p. If ar(p) = 1, then the
proof is trivial.

Let n = ar(p). Let 0; = Strike(p, ) fori € {1,2,...,n}. By the induc-
tive assumption, o; € And({p11,03 }).

We have two cases. First case, o; is not trivial for some 7. Without loss
of generality it can be assumed that there exists pg € {py1,05 } such that
po(a(1),a(n)) = 1 forevery o € p. Then we can easily show that

plar, ... ) = on(T1,. ..y Tn—1) A po(z1,25) € And({p+1,03 }),

which completes this case.

Second case, o; is trivial for every ¢ € {1,2,...,n}. Suppose ¢ € Es,
then by 7. we denote the set of all « € E3 ' such that p(ac) = 1. Hence
ToUT,UTy = B3~ L

We have two subcases. First subcase, To N7} # & (cases Ty N Ty # &
and Ty N Ty # @ are considered in the same way). Let « € ToNTY, 5 € Ts.
Since right preserves p, we have

right(al, 52) = right(«, )2 = right(a, B) € Ta,
right(a0, right(al, 2)) = right(a, 5)0 = right(a, 8) € Ty,

right(al, right(a0, 52)) = right(a, 8)1 = right(a, 8) € T1.
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Hence To N'T3 N1y # @. If p is trivial, then there is nothing to prove. If
p is not trivial, then Ty N Ty N T # E;}fl and by Lemma 3.2 there exist
7,8 € B~ such that

yeToNTINTy, § §é ToNnTyNTy, Tight(’y,(;) =J.

Since o, is trivial, there exists ¢ € FEj3 such that 6 € T.. Since right
preserves p, we have

right(dc,v(c+1)) = d(c+1) € p,

right(d(c+ 1),v(c+2)) = d(c+2) € p.

Hence 6 € Ty N'T7 N Ts. This contradiction completes this case.

Second subcase, for every o € E;f_l there exists a unique ¢ € Fs3 such
that o € T,. Obviously, Ty # @ and Ty # Eg,f_l. Then by Lemma 3.2, there
exist a, 8 € Eg_l and ¢ € {1,2,...,n — 1} such that « € Ty, 8 ¢ Ty,
B(7) = a(y) for every j # i, B(i) = a(i) + 1. Without loss of generality it
can be assumed that 7 = 1.

So, we have d € F3 and v € E;}‘Q such that dy € Ty, (d + 1)y ¢ Tp.
Assume that (d + 1)y € Ty, then

right(dy0,(d 4+ 1)y2) = (d+ 1)70 = (d+ 1)y € Tp.

This contradiction proves that (d + 1)y € T;.
If (d 4 2)v € Tp, then

right((d + 2)70, (d + 1)7y1) = (d 4+ 2)y1 = (d+2)y € T1.
Then Ty N1} # @, which contradicts the assumption. If (d + 2)y € T7, then
right((d + 2)v1,dv0) = dyl = dye T

Then Ty N1y # &, which proves that (d + 2)y € Ts.

LetG ={d € By 2 |dS € Ty A (d+1)5 € Ty A (d +2)6 € Ty} Since
v € G, we see that G # &. Assume that G # E:’,,’_Q, then by Lemma 3.2
there exist o, 3 € E?_Q such that

a€G, B¢ G, right(a,B) = B.

Without loss of generality it can be assumed that dS ¢ Tp.
Let us consider two cases.
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Suppose df € T, then right(dfS1, (d + 2)a2) = dB2 € p and df € Ts.
Then 77 N1y # &, and this contradicts the assumption.
Suppose df € Ts, then right(dS2, da0) = dB0 € p and dB € Ty. Then
To NT» # @, and this contradicts the assumption.
Hence, G = EY % and p(x1,...,7,) = 1 & (21 = 2, + d). Therefore,
p e And({erh(jS:})'
O

Lemma 3.4. Suppose p € Inv(right) N Ry, then p € Shift(By U Main).

Proof. 1If ar(p) < 1 then p € By and there is nothing to prove. Suppose
VarValues(p, i) = E3 for every ¢ € {1,2,...,ar(p)}, then by Lemma 3.3
we have p € And({p41,03 }). Since p is essential we get p € Shift(By).
This case is finished.

Suppose VarValues(p,i) # Fs3 forsome i € {1,2,...,ar(p)}. Let

m = |[{i | VarValues(p, i) # E3}|.

It can be shown that there exists p’ € Shift(p) such that VarValues(p’, i) C
{0, 1} for i < m and VarValues(p’, i) = F3 for i > m. Since p’ is essential,
we see that VarValues(p’,7) = {0, 1} for every i < m. Letn = ar(p) — m.

To complete the proof we need to show that p/(1,...,1,b1,...,b,) =1
for every b1, ba, ..., b, € Fs. Put

pU(y17"'7y’rL) = 3xl 3x'm p/(x17'~~7xmayl7"’7yn)~

By Lemma 3.3 we obtain that pg € And({p+1,05 }). If po is not trivial then
it can be easily checked that there is no an essential tuple for p’, hence p’ is
not essential. This contradiction proves that py is trivial.

For every i < m, since 1 € VarValues(p’, i) there exists d; € p’ such that

v = right(d1, right(da, right(. .. (right(0m—1,9m)) ...)))-

Obviously (i) = 1 for every i € {1,2,...,m}. Since right € Pol(p'), we
see that v € p'.

Let v = [,(7). Let G = {6 € E} | p'(1™§) = 1}. Obviously, v/ € G
and G # @. Assume that G # EYF. By Lemma 3.2 there exist o, 8 € Ef
such that

a € G, B¢ G, right(a,8) = 8.
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Since py is trivial, there exists Sy such that 53 € p’. Since right € Pol(p’),
we obtain
right(Bof, 1™a) =1"6 € p.

This contradiction proves that G = E% . This completes the proof.

3.2 Clones aQ and aW.
Lemma 3.5. Bo U Bl - [{pw, p+1}].

Remark. Note that [{pw, p1+1}] = Inv(agmo).
Proof. Obviously, {0,1} = Strike(pyw,2). Hence, by Lemma 3.1 we have

Bo C [{pw,psr}]. Leto — (8 1) . Then

o(z,y) = o3 (z,y) A (z € {0,1}),
p<(@,y) = pw(y,z + 1) A (z € {0,1}),
pv.e(z,y) = pw(y,z +2) A (z € {0,1}),

pn(x,y) = pw(x,y) A pw(z,y+1).

Lemma 3.6. BO U Bl - [{P:,Ol; p+1}].
Remark. Note that [{p— 01, p41}] = Inv(aQ).

Proof. Obviously, pw (z,y) = 3z p=01(z,y,z), hence by Lemma 3.5 we
have By U B; C [{p—,01,p+1}]-

O
Lemma 3.7. BO - [{p:}012,p+1}].
Remark. Note that [{p= 012, p+1}] = Inv(aW).

Proof. Obviously, we have {0, 1} = Strike(Strike(p= 012, 2), 2). Therefore,
by Lemma 3.1 we get By C [{p= 012, p+1}]-
O

Lemma 3.8. Suppose p € Inv(right), then p € [{p=012,p+1}]-

Remark. This lemma states that Inv(right) C [{p= o012, p+1}] = Inv(aW),
that is [{right}] O aW.
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Proof. The proof is by induction on the arity of p. If ar(p) = 0 then the proof
is trivial.

By Lemma 2.6, there exists a set of predicates W C [{p}U{p= 012, p+1}]
such that p € And(S) and every predicate in W is maximal with respect
to {p=,012,p+1}. Since right preserves the predicates p— 12 and p;1, we
have W C Inv(right). Hence, it is sufficient to prove this lemma only
for predicates that are maximal with respect to {p= 912, 0+1}. Let « be a
key word for p. By Lemma 3.4 it can be assumed that p € By U Main.
If p € By, then the proof follows from Lemma 3.7. Suppose p € Main,
VarValues(p,i) = {0,1} for i < m, VarValues(p,i) = E3 fori > m,
n = ar(p) — m.

By the definition of Main, there exists ¢ < m such that «(¢) = 0. Without
loss of generality it can be assumed that ¢ = 1. Let

po(l’g,lﬂg, ey Tmy Y1y 7yn) = p(03x27x37 ey Ty Y1, .- 7yn)

By Lemma 2.3 we have py € [{p, {0}}]. Hence py € Inv(right), and by the
inductive assumption we obtain py € [{p= 012, P+1}]-

Let us define a predicate py. Put po (21, ..., Tmin) = 1 iff there exist
f2, f3, -+, fm+n € F3 such that forevery i € {2,3,...,m + n} we have

p:7012(x17fiazi) = 17

po(f27f37 .. ~afm+n) =1.

Obviously, po € [{po, p=012}] € [{p=,012: p+1}], pa(a) = 0, and po > p.
Since « is a key word for p and p is maximal with respect to {p— 012, p+1},
we have p, = p. This completes the proof.

O

Lemma 3.9. Suppose p € Inv(right), p=o12 ¢ [{p,p=.01,p+1}]- Then
p € [{p=01,p+1}].

Remark. In other words, if C'is a clone, aW C C' C aQ, and C # aW,
then C' = aQ.

Proof. The proof is by induction on the arity of p. If ar(p) = 0 then the proof
is trivial.

By Lemma 2.6, it is sufficient to prove this lemma only for predicates that
are maximal with respect to {p= 01,041} . Let o be a key word for p. By
Lemma 3.4 p € Shift(By U Main). If p € Shift(By), then the proof follows
from Lemma 3.6. Suppose p € Shift(Main), then there exists 7 such that
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VarValues(p, i) = {b,b+ 1} and «(i) = b. Without loss of generality it can
be assumed that VarValues(p,1) = {0,1} and a(1) = 0.

Letr = ar(p), po(x2,x3,...,2.) = p(0,x2,x3,...,x,). By Lemma 2.3
and Lemma 3.6 it follows that py € [{p,{0}}] C [{p, p=,01, p+1}]. Hence,
po € Inv(right), p= 012 ¢ [{po, p=,01,p+1}] and by the inductive assump-
tion we obtain pg € [{p=,01, p+1}]-

Let o' = [.—1(). It can be easily checked that pp(c’) = 0 and o’ is an
essential word for pg. Hence, pg is an essential predicate.

Then by Lemma 3.4 it can be assumed that pg € By U Main.

Suppose ar(pp) = 1, then p belongs to the set

({0 D003 )

Hence, by Lemma 3.6 we have p € [{p= 01, p+1}]-

Suppose ar(pg) = 2 and pg € By, then p € Shift(p=012) and p= p12 €
[{p, p+1}]. This contradict the assumption about p.

Suppose that pg € Main. Let VarValues(pg,i) = {0,1} for i < m,
VarValues(pg, i) = E3 fori > m, n = ar(pg) — m.

Let us define a predicate p,. Put p,(z1,22,. .., Tmint1) = 1 iff there
exist f1, fa,..., fm € E3 such that for every ¢ € {1,2,...,m} we have

p=o1(x1, fi,xig1) =1,

pO(f17~--7fm7-73m+27---;$m+n+1) - 1

Obviously, pa € [{p0; p=01}] € [{p=01,p+1}]; pa(a) = 0, and p, > p.
Since « is a key word for p and p is maximal with respect to {p— 01, P41},
we have p, = p. This completes the proof.

O

3.3 Clones aP,aPN, aP,,.
BY pPkey,15 Prey,2> and prey 3 we denote the predicates defined by the follow-
ing conditions:

Phey,1(T1,72,73) = 1 & (21,72 € {0, 1})A
(({,El = 1) V (({,EQ = 0) Nx3 € {0, 1}) V (1'3 = 1)),

Prey2(1,22,23) =1 (21 =1)V ((x1 = 0) A (22 = 1))V
((z1=0) A (z2 = 0) A (25 = 1)),
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pkey,3(1’1,$27$3) =1& (331 = 1) V ((1‘1 = O) AN ({L‘Q = 1))\/
((z1 =0) A (22 = 0) A (23 € {1,2})).

Lemma 3.10. {IOS’ ,0\/72} - [{PN7 p+1}] .

Remark. In other words, [{pn, p+1}] = [{pN, pv 2, p+1}] = Inv(a2N) and
a2N - M.

Proof. Obviously {0,1} = Strike(pn, 2). Then we have
p<(@,y) = pn(y,2) A (z € {0,1}),

pv.e(z,y) = pn(z,y+2) A (y € {0,1}).

Lemma 3.11. Pv,3 =Tg oo € [{PW7P+1}]

Remark. In other words, this lemma states that Pol({pw, p+1}) = agmo

Proof. py3(z1,x2,23) = Iy pw(x1,y) A pw(x2,y + 1) A pw (23,5 + 2).
O

Lemma 3.12. Suppose p € II', m +n > 3, n > 1. Then pw € [{p}].

Proof. Suppose p = ma,,... A, and 1 € A;. It can be easily checked that py

m

is obtained from p by striking all rows except the i-th and (m + 1)-th.
O

Lemma 3.13. 7715 n) € {712, 0t 13 -
Remark. This lemma implies that aP,, 1 C aP,,.

PVOOf 7T{1,2,...,n} (l’, Yi,Y2, .- 7yn) = 7T{1,2,...,n,n+1}(xa Y1, 91,92, - - ayn)

O]
Lemma 3.14. p— o1 € [{pkey,1} U Bo).
Proof. Obviously, pw (x, 2) = 3y prey.1(z,y, 2),
p=,01(T1,22,73) = Y Prey,1(T1,Y, T2) A pw (y, 2 + 1)A
Prey,1 (21,9, 23) A pw (y, z3 + 1).
O
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Lemma 3.15. pP=,01 € [{pkey,2} @] Bo]

Proof. p—01(2,Y,2) = prey,2(2,y, 2+ 1) A prey,2(z, 2,y + 1).

Lemma 3.16. p— 01 € [{pkey,3} U Bo).

Proof. p—01(2,Y,2) = prey,3(T,Y, 2+ 2) A prey,3(x, 2,y + 2).

Let ko = p<, K1 = PN, K2 = pw, Kr = T{1,2,... r—1) TOr 7 > 3.
By Lemma 3.10, Lemma 3.5, Lemma 3.12, and Lemma 3.13 it follows
that ;- € [{K41,p+1}] for every r > 0.

Lemma 3.17. Suppose p € Inv(right), p= o1 ¢ [{p} U BoU Ba]. Then there
exists 7 < ar(p) such that p is equivalent to k, with respect to By U Bs.

Remark. The lemma essentially shows thatif C'isacloneand aQ C C' C aP
then C' € {aP,,aP,aPN,aP,,aP3,aPs,...,}.

Proof. The proof is by induction on the arity of p. If ar(p) = 0 then p is
equivalent to o with respect to By U By. By Lemma 2.6, p is presented as a
conjunction of predicates 01, ..., ds € [{p}UBgUDBs] such that §; is maximal
with respect to By U By for every ¢ € {1,2,...,s}. Suppose we prove that
forevery i € {1,2,..., s} there exists r; such that ¢; is equivalent to «,., with
respect to By U Bs. Therefore, it can be easily checked that p is equivalent to
K, with respect to By U By, where r = max(r;).

Hence, it is sufficient to prove this lemnzla only for predicates that are max-
imal with respect to By U Ba. Let o be a key word for p. By Lemma 3.4
it can be assumed that p € By U Main. If p € By, then p is equiva-
lent to K9 = p< € By with respect to By U By. Suppose p € Main,
VarValues(p,i) = {0,1} for ¢ < m, VarValues(p,i) = E3 for i > m,
n = ar(p) — m. Since « is essential for p, for every j € {1,2,...,m + n}
there exists 5; € p such that a(p) = B;(p) for every p # j.

If n = 0, then p € B5 and p is equivalent to ko with respect to By U Bs.

Suppose n > 1. If m = n = 1, then p € Shift({k1, ka}).

Suppose m + n > 3. Assume that there exist i1,io < m, i3 # i such
that o(i1) = a(iz) = 1. Since p € Inv(right), we see that right(8;, , Bi,) =
« € p. This contradiction proves that |,,, («) contains at most one 1.

Let us consider two cases. First case, there exists j € {1,2,...,m} such
that a(j) = 1. Without loss of generality it can be assumed that j = 1. Using
Lemma 2.2, it can be assumed that o(p) = 0 for every p > m + 1. Then
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we have o = 10™*"~1. Suppose j3;(i) = 2 for some i > m + 1, then
right(Bi, B1) = a € p. This contradiction proves that 3; € {0,1}™*" for
every j € {1,2,...,m+n}.

Let us prove that pey1 € [{p} U By U Bz]. Assume that d0™ 22 € p
for some d € {0, 1}. Since 10™*"~21 = 3, 1,,, 0™*" = 3, we have

right(right(d0™+"=22,10™+"=21),0™*") = 10" =a € p
This contradiction proves that d0"*"~22 ¢ p for every d € {0, 1}. Then

pkey,l(xhzz,l’:s) =df Pg(xzvf) Nxy € {0,1} A p(f,w1,..., 71, 23).

Since {0, 1}, p< € BoU By, we see that pie, 1 € [{p}UBoU Bs]. Hence, by
Lemma 3.14 we have p_ o1 € [{p} U ByU Bz]. This contradicts the condition
of the lemma.

Second case, a(j) = 0 for every j < m. Assume that m > 2. Let

pl(‘r>y17-'-7yn) :p(x7x7-'-7x7y17'-'aym>‘

By the inductive assumption, p’ is equivalent to r,, with respect to By U By
for some p > 0. Let us define a predicate p,,

pa($17-'-axm7yla---7yn) :Elf p—),m(xlw")xmaf)/\p/(f’y17"'>yn)'

It can be easily checked that p'(x, y1, . . ., Yn) = Pa(Ty Ty T YL, ooy Ym)-
Hence, p,, and p’ are equivalent with respect to By U Bs. Obviously, p, > p
and p,,(«) = 0. Since p is maximal with respect to BylUBs we obtain p = p,,.
Then p is equivalent to x,, with respect to By U Bs.

Assume that m = 1,n > 2. By Lemma 2.2, it can be assumed that
A, B,y Bur1 € {0,1}7F1. Assume that a(i;) = a(iz) = 1 for some
i1,12, i1 # ia. Since p € Inv(right) we have right(5;,, fi,) = o € p. This
contradiction proves that either there exists a unique 4 such that (i) = 1, or
a = 0™T1. Let us consider two subcases. First subcase, o #+ 0™+1!. Without
loss of generality it can be assumed that « = 0™ 1. Hence,

right(right(... (right(Bs, B3), B4), .- .), Bn) = 01" € p.
. _ nn+1 n—1
Obviously, £,11 =0 € p. Assume that 02"~ "1 € p, then
right(02"11,0"") = 0"1 = a € p.

This contradiction proves that 02711 ¢ p.
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Assume that 027710 € p, then
right(02"710,01™) = 02"~ '1 € p.
This contradiction proves that 027710 ¢ p. Let
0(x1, e, x3) = p(x1, T2, ..., T2, 23) A p(T1,23,...,23,T2).

It can be easily checked that if p(0,2,...,2) = 1, then § = p= ¢12; and if
p(0,2,...,2) = 0, then § = p— 1. Then it follows from Lemma 3.8 that
p=01 € [{p} U By U By]. This contradicts the condition of the lemma.

Second subcase, o = 0”11, Hence 3; = 0°~110"~*+! for every 4. Since
p € Inv(right) we see that for every aq,...,a,+1 € {0,1}

p(al,ag,...,an+1):0@a1:agz...:an+1:0.

Let po(y1y .- yn) = p(0,y1,...,Yyn). Obviously, 0™ is an essential word for
po and py is essential. By Lemma 3.4 we have py € Shift(By U Main).

If po € Shift(By), then p € Shift(p=12). By Lemma 3.8 we have
p=01 € [{p} U By U By]. This contradicts the condition of the lemma.

Suppose po € Shift(Main). Let Wy = {i | VarValues(po,i) = Es3},
Wy ={1,2,...,n}\ Wi. Assume that W7 # @. Substituting in p variable y
for the (i + 1)-th variable for every i € W5, and substituting variable z for the
(¢ 4+ 1)-th variable for every i € W, we obtain a predicate p'(x1,y, z) such
that:

Ve,d € Es  p'(1,¢,d) =p'(0,1,¢) = p'(0,0,1) = 1,

Ve,d € E3 pl(za C, d) = P/(Oa 276) = p/(oa 070) =0.

If p'(0,0,2) = 0, then p’ = ppey,2; if p'(0,0,2) = 1, then p' = prey.3-
By Lemma 3.15 and Lemma 3.16 it follows that p— o1 € [{p} U By U Ba].
This contradicts the condition of the lemma.

Suppose W1 = &. Therefore, py = pv . It can be easily checked that
P = T{1,...n} = Kn+1. This completes the proof.

.....

O

3.4 Final constructions for ® and Y.
Lemma 3.18. Suppose p € Bs, « is an essential word for p. Then o contains
at most one 1.

Proof. Suppose n = ar(p). By the definition of an essential tuple for every
i€{1,2,...,n} there exists 8; € p such that a(j) = B;(j) for every j # i.
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Assume the converse. Let «(i) = «(j) = 1 for some i # j. Hence
right(B;, 8;) = a € p. This contradiction completes the proof.
O

Lemma 3.19. B; C [{p_ 2, {0}, {1}}]

Proof. We consider all predicates from By as predicates from Rs. It is suf-
ficient to show that Pol({p_, 2, {0}, {1}}) C Pol(B;). Obviously = V y
preserves every predicate 0 € Bj. By the description of Post’s lattice we
have Pol({p_ 2, {0},{1}}) = Pol(Bz2) = [{z V y}]. This completes the
proof.

O

Lemma 3.20. Suppose p € By is essential, ar(p) > 2, p_, o ¢ [{p}], then

c 0 1 0 0 1 0 1 1
P 0 1 ) 01 1 ) 00 1 yPV,25 PV,35 - - -

Proof. 1f ar(p) = 2, then we can easily show that

CL(0 1y (00 1y (011
P o 1)°\0 1 1)'\o o 1)PV2["

Suppose ar(p) > 3. Let « be an essential word for p € R}. For every
i €{1,2,...,n} there exists 8; € p such that a(j) = B;(j) for every j # i.

By Lemma 3.18 « contains at most one 1. We consider two cases. First
case, a(j) = 1 for some j € {1,2,...,n}. Without loss of generality it can
be assumed that § = 1. Then we have 8; = 0", 8; = 10°~210™* for i > 2.
Let us prove that p< € [{p}]. Since p € Inv(right), we have 1y € p for
every v € {0,1}71\ {on "1},

We consider two subcases. First subcase, there exists i« € {2,3...,n}
such that 0°=110"~% ¢ p. Without loss of generality it can be assumed that
i = n. Then p<(z,y) = p(y,y, ..., Y, %)

Second subcase, forevery i € {2,3...,n} we have 0°~110"~* € p. Since
p € Inv(right), we get 01"~ € p. Then p<(z,y) = p(z,y,y,...,y)

So, we proved that p< € [{p}]. It can be easily checked that

ps2(x,y,2) =32 Iy p(z, 2",y v .. y) A p< (2! 2) A p< (¥, y).

But this contradicts the condition of the lemma.
Second case, v = 0™. It can easily be checked that 8; = 0°~110" ¢ for
every i € {1,2,...,n}. Since p € Inv(right), we obtain p = py .
O
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Lemma 3.21. Suppose p € Inv(right) N Rs, po & [{p} U Bo), then
p € Shift(By U By UTI).

Proof. Since p is essential, there exists an essential word o for p. By the
definition of an essential tuple for every i € {1,2,...,ar(p)} there exists
B; € psuch that a(j) = B;(j) for every j # i.

By Lemma 3.4 we can assume that p € ByUMain. If p € By then there is
nothing to prove. Suppose p € Main, which means that VarValues(p, i) =
{0,1} for i < m, VarValues(p,i) = E3 for i > m, n = ar(p) — m. By
Lemma 2.2, we can assume that &, 31, . . ., Bman € {0, 1}mF7,

If n = 0, then by Lemma 3.20 we have p € By U B; U Ilj, which proves
the lemma in this case.

Suppose n > 1. If m = n = 1, then p € Shift({pn, pw}) C Shift(By),
which proves the lemma in this case.

Suppose m +n > 3. Let

pO(xlv"wl’m?ylv"'ayn) =1<
(p(‘rlavxmnylavyﬂ) = 1) /\(VZ Yi € {031})

In other words po = p N {0,1}™*". Obviously, py € [{p} U By]. Clearly,
« is an essential word for pg, hence, pg is essential and by Lemma 3.20 we
have pg = pv . m-n- Therefore, a« = 0",

Let

pl(xla--~7xmayl7"'7yn) =1
(p(x1,.. s zm,n+ 1, . yn + 1) =1) A (Viy; € {0,1}).

Obviously p; € [{p} U By]. It follows from Lemma 2.5 and Lemma 3.20 that

pP1E And({a7 P<, {O}a {1}7p\/,27p\/,3a .- })’

0 1
h = .
where o (O 1)

Since py = pv.m+n and n > 1 we get p1(as, ..., am,0,...,0) = 1 for
every ai,...,am € {0,1}. Since p € Main for every by,...,b, € {0,1}
we have py(1,...,1,b1,...,b,) = 1.

Therefore, p1 € And({p<}) and there exist i1,...,is € {1,2,...,n},
Jis---,Js € {1,2,...,m} such that

pl(xlv"'7xmay17"'7yn) :pf(yiuzjl) AR /\pf(ylsaz]s)
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By A; we denote the set of all ¢ such that p<(y;, x;) is used in this formula.
Assume that A; U ... U A, # {1,2...,n}. Then there exists some

ce{l,2...,n}\ (A1 U...UA,).
Let
P2(T1, oy By Y1y - Yn) = 1 & (Viy; € {0,1})A
(p(xlw">xmay17"‘7ycfl7yc+17y0+17"‘7yn) - 1)

Obviously p2 € [{p} U By]. Analogously as for p; we show that for every
A1y ..y Qp,b1,. .., b, € {0, 1} we have

pg(al,...,am,O,...,O):pg(l,...,l,bl,...,bn):1.

Since p1(0,...,0,1,0,...,0) = 1, we get p2(0,...,0,1,...,1) = 1. By
—_——— —— ——

m—+c—1 n—c m n
Lemma 2.5 and Lemma 3.20 we have

p2 € AHd({O’, P<, {0}7 {1}713\/,2,0\/,3, B })
Hence, we get py = {0, 1}™+™,
Let
P3(3317--~7$may17~-~,yn):1<:>(W yle{oal})/\
(p(xh o Tmy Y1y e ey Ye—15Ye + 27y6+17 e ,yn) - 1)

Obviously, we have p3 € [{p} U By]. Since po = {0,1}™*", for every
A1y .y Qpyb1,. .., b, € {0,1} we have

p3(a17~-'aama07"'30) :pS(lv"'717b17"'7bn) =1
Since pg = pv . m+n and m +n > 3, forevery j € {1,...,m} we have

p3(1,1,...,1,0,1,1,...,1) = 1.
—_—
Jj—1 m4n—j
By Lemma 2.5 and Lemma 3.20 it follows that
p3 € And({aa P<s {0}7 {1}7 Pv,250v,35 - })
Hence, we get p3 = {0,1}™*", and p(0,...,0) = 1. This contradiction

proves that A, U... U A,, = {1,2...,n}.
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Let us prove that p = w4, .. 4,,. Obviously these predicates are equal on
the tuples from {0,1}™*". Let v € {0,1} x E%, v(j) = 2 for some j.
Without loss of generality it can be assumed that there exists n’ < n such that

Y(m+1),y(m+2),...,y(m+n) € {0,1},
yim+n' +1)=ym+n" +2)=...=v(m+n) =2.
Put v/ =], (7)1 27" Let
pa(T1, o Ty Y1y -y Yn) = 1 (Vi y; € {0,11)A
(p(‘rlv‘",mmaylvﬂwyn’ayn”rl+1a"'7yn+1):1)'

Obviously ps € [{p} U By]. In the same way as for the predicates p; and po
we can show that for every aq, ..., mins, b1,...,b, € {0, 1} we have

p4(ala"'7am+n'a0a""0):p4(17"'717b17"'abn):1'

By Lemma 2.5 and Lemma 3.20 we have

Pa € And({av P<s {0}7 {l}vpV,va\/,fiﬂ . })
Hence, ps € And({p<}) and there existds, ...,ds € {n'+1,n'+2,...,n},
e1,...,es € {1,2,...,m} such that
,04(1‘1, sy Tmy Y1y - - 7y77) = Iog(yd17’rel) Ao A pf(yds/vxesl)'

Using the formula above, we get p(y) = p(7’). Obviously,

TAyAm (V) = Tay 4, (V)

By the definition of A;,..., A,, we have p(y') = ma, a4, (7). Hence,
TAy....A,, (7) = p(7) forevery v € {0,1}™ x E¥. This completes the proof.
O

Lemma 3.22. Suppose p1, p2 € 11, po < py, then ps € [{p1} U By U By).

m' >m,n <n,m +n =m+n, A, = A, N{1,2,...,n'} fori €
{1,2,...,m}, A, = @ fori € {m+1,m+2,...,m'}. It can be easily
checked that

’
Proof. Suppose p1 = ma,,.. A, € 7' po = mar 4, € I, where

pQ(xla--~7xm’7y17"'ayn’) = (VZ > m-+1: T; € {071})/\
P1(Z1, e Ty YTy e e s YUnt s Tt 1y Tt 2y -+ s Tin )«

O
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Lemma 3.23. Suppose p1, p2 € 11, pa <? p1, then ps € [{p1} U By U By].

Proof. Suppose that p1 = w4, 4, € 1}, p2 = TAL,. AL € HZ”&’,

m

m’ < m,n’ = n, the set {1,2,...,m} is divided into non-overlapping sets

Ki,..., K, suchthat A = |J A;.Itis easy to show that p, can be ob-
JEK;

tained from p;(z1,...,Zm,Y1,.-.,Yn) by identification of variables from

the set {z; | ¢ € K} for every j, and permutation of variables.
O

Lemma 3.24. Suppose p1, pa € I1, pa <3 py, then pa € [{p1} U By U By].

Proof. Suppose p1 = ma,,.. 4, €I, po = Ay, A € II}*. For every
j€{1,2,...,m} we have A; C A’ It can be easily checked that

P2(T15 s Ty Y1s s Yn) = PL(TLs - T YLy Yn) A /\ pw (@5, Yi)-
ic Al

[
Lemma 3.25. Suppose p1,p2 € 11, p2 < p1, then pa € [{p1} U By U By].

Proof. If 01,09 € 11, 01 ~ 03, then o; is obtained from o2 by a permutation
of variables. Hence o1 € [{o2}] and 09 € [{o1}]. Using this, Lemma 3.22,
Lemma 3.23, and Lemma 3.24 we obtain that p; € [{p1} U By U By].

O

Theorem 3.26. Suppose M is a clone, M C Pol({p+1,{0,1}}) and
right € M. Then M € @ UY U {M, C}.

Proof. Let S =Inv(M). By Lemma 3.1, we have By C S.

By Lemma 3.8, it follows that if p— 912 € S, then S = Inv(right) and
M = [{right}] = aW € ®. Suppose p= 912 ¢ S.

Suppose p— 01 € S. It follows from Lemma 3.9 that [{p= 01, p+1}] con-
tains every predicate p € Inv(right) such that p— 012 ¢ [{p, p=01,p+1}]-
Therefore, S = [{p=01,p+1}] and M = aQ € ®. Suppose p= o1 ¢ S.

Suppose p_, 2 € S, then by Lemma 3.19 we get B, C S. By Lemma 3.17,
every predicate from S is equivalent to x,, with respect to By U By for some
n > 0. Let ng be the maximal number such that x,, € S. Hence, we have
S = [{Kne} UBoUBy]. If ng = 0, then M = aP € ®, if ng = 1, then
M = aPN € ®,if ng > 2, then M = aPp,—1 € ®. If ng does not exist
then S = [{ky | n € No} U By U Bg] and M = aP, € ®.
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Suppose p_, 2 ¢ S. By Lemma 3.21 we have
SN Ry C Shift(By U By UTI).

Suppose py € S. By Lemma 3.5, we have B; C S. Let S; = S N IL
By Lemma 3.25, S is a downset. By Lemma 3.11, 7z o o € S;. Hence
S # @. Therefore SN Rs = Shift(S;UByUB; ) and M = Clone(S,) € Y.

Suppose pw ¢ S, pv,2 € S. By Lemma 3.12 we have SNII C I, where
IIy = {pvi | i > 3}. Let ng be the maximal number such that py ,, € S.
If ng does not exist then put ng = co. Obviously py ; can be obtained from
pv.i+1 by identification of variables. Hence py; € [{pv.+1}] for every i.
Using Lemma 3.10, we get p< € [{pn, p+1}] - Therefore, only the following
cases are possible:

1. py € S, hence M = a,,N € &,
2. pn ¢ S, p< € S, hence M = a,, M € D,
3. p< ¢ S, hence M = a,, € .

Suppose py .2 ¢ S, then using Lemma 3.10 we get either SN Rs = Shift(By)
and M = C € ©, or S N Ry = Shift(By U {p<}) and M = M € ©. This
completes the proof.

O

4 PROOF OF THE MAIN STATEMENTS AND THEOREMS

4.1 Correctness of the description of the lattice
Let

0 1 _
B3: {{0}7{071}7 (O 1)»P+1»P§;037Pv,2apN70W}-

Obviously, Bs C By U Bjy.

The proof of the following theorem is rather cumbersome and complicated.
It does not contain any interesting idea. We just check carefully all conditions
from the definition of essentially closed set. That is why, we omit the proof
and refer the reader to [12].

Theorem 4.1. Suppose F € 11, then Shift(F U Bs) is essentially closed.

Lemma 4.2. Suppose ma,.... A, €1, m+n > 3, then 0™*" is a unique
essential word for ma, ... A

sAm *
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Proof. Assume that o # 0™ and « is essential for TA;,..., A - LEt
po(mlv"'vgjmaylv"wyn): /\ pW(xwy]) A (/\I’L € {071}> .
JEA; i

Then 7a, .. a,, (8) = po(B) for every 3 # 01", Then « is essential for py.
But the predicate pg is not essential. This contradiction concludes the proof.
O

Lemma 4.3. Suppose F €11, p € Shift(F) N 11, then p € F.

Proof. Suppose p € Shift(p’), where p € TI"" N F. By Lemma 4.2, 0™ "
is a unique essential word for p and p’. Hence, there exists a permutation
o:{1,2,...,m+n} —{1,2,...,m+ n} such that

p(21, 22, - s Zman) = 0 (20(1)s 20(2) - - + > Zo(m+n) ) -

Since p € II, we obtain that VarValues(p,i) = {0,1} for ¢ < m, and
VarValues(p, i) = Ej5 for i > m. Therefore, o (i) < m for every i < m. Let

pO(Zla 22y ZWL+7L) = Pl(Zla <9 2Bms RBo(mA1)s Ro(m42)s - -+ ZU(’m—i—n))'
It can be easily checked that
P(Zh B2y ey Zm+n) = po(zo(l)v Rg(2)s 3 ”a(m)s Fm+1ly -« Zm-‘rn)'

Then p <? py ~ p'. Hence, p < p’ and p € F. This completes the proof.
O

Theorem 4.4. Suppose Fy, F; € ﬁ, then
Clone(Fy) C Clone(Fy) < F| D Fs.

Proof. If Fy D Fy, then obviously Clone(F}) C Clone(Fy).
Suppose Clone(F;) C Clone(Fs), then

(1 Ufpw, p1}] 2 [Fo U {pw, p41}].

By Lemma 3.5 we have B C [{pw, p+1}]- Since {pw, p4+1} C B3 we get

[{pw,p+1}] = [Bs] and thus [F} U B;] O [F> U Bs]. So, we have

[F, UBs|N Rs 2 [F> U Bs] N Rs.
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By Theorem 4.1, Shift(F; U Bs) and Shift(F» U B3) are essentially closed.
Then it follows from Lemma 2.2 and Theorem 2.8 that

[Fy U Bs] N Rs = Shift(Fy U Bs), [F» U B3] N Rs = Shift(F, U Bs).
Hence Shift(F; U Bs) DO Shift(F; U Bs) and
Shift(Fy U B3) N1TI D Shift(F, U By) NI

If p € Fy, then p € Shift(F;) NII. By Lemma 4.3 we have p € F}. Hence,
F1 D F5 and the theorem is proved.
O]

Theorem 4.5 ([9, 12]). Suppose M is a clone in Ps, M C Pol(py1), and
M ¢ Pol({0,1}). Then M € ©.

Theorem 4.6 ([9, 12]). Suppose M is a clone in Ps, right,left ¢ M, and
M C Pol({p4+1,{0,1}}). Then M € O.

Theorem 4.7. OUDUTY is the set of all clones M such that M C Pol (p41) .

Proof. Suppose M C Pol(p,1). We shall prove that M € T U O U .
Suppose S = Inv(M).

If {0,1} ¢ S, then using Theorem 4.5, we get M € ©.

Suppose {0,1} € S.If right € M or left € M, then by Theorem 3.26
we have M € U T U {M, C}.

If right ¢ M, left ¢ M then it follows from Theorem 4.6 that M € ©.
This completes the proof.

O

4.2 Pairwise inclusion of clones into each other
Theorem 4.8. Supposet > 3, F' € 11, then Clone(F') C a;N iff eithert = 3
or F ¢ It 1,

Proof. First, let us show that Clone(F') # a,IN. It is sufficient to check that
the function s € a;IN and sy does not preserve pyy .

Suppose Clone(F') C ayN. Since Shift(F U Bs) is essentially closed, we
see that py + € F. Hence, either t = 3, or F/ Z TI' 1.

Let us prove the sufficiency. The proof follows from Lemma 3.11 for
t = 3. Suppose t > 4, p € F\II'"1, then p € 11", where m +n > t.
It can be easily checked that py; <? py.nin SU p. Therefore, py < p
and py ; € F. By the definition of ayN, we have Clone(F) C a;N. This
completes the proof.

O
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Lemma 4.9. Suppose n € N, then g,, € aPy, g, ¢ aPp 1.

Proof. Tt can be easily checked that g1 € Pol(pw ) and g,, € Pol(p_, 2) for
everyn € {1,2,...}. Hence g1 € aP;. Letus prove that g, € Pol(7yq,.. ,})
for n > 2. Assume the converse. Then there exist a1, ..., Qpy2 € T(1 . 5}
such that

gn(ala az, ... 705n+2) = 6 ¢ T{1,....,n}*

Since g, preserves {0,1} and 3 ¢ w1, 3, we have 3(1) = 0. Hence,
a;(1) = 0 for every i < n + 1. Then it is easy to show that ; € {0,1}"+!
for every i < n+ 1. Therefore, 8 € {0,1}"*!. By the definition of 7y},
«a; contains 1 for every i < n + 1. Hence, there exist j € {2,3,...,n+ 1}
and i1,92 € {1,2,...,n + 1} such that 4; # iy and oy, (j) = i, (j) = 1.
Therefore, 3(j) = 1 and 8 € 7y, 3. This contradiction proves that g, €
Pol(7yy,... ny) for every n > 2.

Let us prove that g,, ¢ Pol(mf12 . n413)- Let a; = 0°10" 7 for every
i€ {1,2,...,n+ 1}, apyp = 12711 Obviously, oy € w15 pp1y for
every i € {1,2,...,n+ 2}, and

.....

gn(ah cee 704n+2) = Q"2 ¢ T{1,2,....,n+1}+

This completes the proof.

Lemma 4.10. Suppose t > 1, then 11y C [{py1, p— 2, pw, T{1,2,... 4})-

Proof. Suppose m4,,... A, € II7', where n < ¢.If n = 0, then the lemma
follows from Lemma 3.19. Suppose n > 1. By Lemma 3.13 and Lemma 3.19
we have

T{1,2...m}» P—,m € {ps1, P—,2, PW, 7T{1,2,...,t}}]~

It can be easily checked that
TA,...,An (3317 ey Imy Y1y - - 7yn) -

Jz p—>,77l(‘r17 sy Timy,y Z) A ﬂ-{l,?,...,n}(zvyla s 7yn) A ( /\ pW(xja yl))
iEAJ‘

This completes the proof.

Lemma 4.11. f2° € Pol(ITU Bs).
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Proof. Tt is easy to check manually that f2° € Pol(Bs). Let ma, .. 4, €
IT7". Assume that f2° ¢ Pol(ma,, . 4, ). Let

pO(xla"wxmvylv"wyn) = /\ pW(xzvyj) A (/\x’b S {Oa]-}) .

JEA:

Obviously, w4, .. 4, (7) = po(7) forevery v € {0,1}+™\ {0™*"}. Since

22 € Pol(Bs3), we have f2° € Pol(pg). Suppose a1, a2, 03 € T4, .. A,

(a1, az,a3) = B ¢ 7a,,. 4, Since f2°(a1, g, a3) € po, we get § =

o,

AAAA A,, , there exists j such that a; (j) = 1. By the definition

of f2° we obtain that 5(j) € {1, 2}. This contradiction completes the proof.
O

Theorem 4.12. Suppose I’ € II, then aPy C Clone(F) iff FF C II,.

Proof. Let

S =Inv(aPy) = [{p41, P2, P T1 2. 43 }] -

Let us prove the necessity. Suppose aP C Clone(F'), then F' C S. Assume
that F' Z II,, then there exists p € II"" N F' such that n > ¢. Obviously,

7T{1,2,...,n} (xvyla s ayn) = P(l; e Ty Yty ,yn)

Therefore, m(15,...,) € F C S. Hence aP,, = aPy, where n > t. This
contradicts to Lemma 4.9.

Let us prove the sufficiency. By Lemma 4.10 we have II; C S. Hence,
F CTI; C Sand aPy C Clone(F).

To complete the proof we have to show that aPy # Clone(F). It follows
from Lemma 4.11 that f2>° € Clone(F). Itis easy to check that f2° does not
preserve p_, 2, hence f2° ¢ aPy. This completes the proof.

O

Theorem 4.13. Suppose F € I, then aP., C Clone(F).

Proof. By Lemma 4.10 we obtain IT C Inv(aP,). Hence, F' C Inv(aP )
and aP, C Clone(F).

To complete the proof we have to show that aP., # Clone(F). By
Lemma 4.11 we have f° € Clone(F). It is easy to check that f2° does
not preserve p_, o, hence f2° ¢ aP .. This completes the proof.

O
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4.3 Bases of clones
Lemma 4.14. Suppose | > 3, then fL. € Pol(II' U Bs), f. ¢ Pol(pyi+1),

Proof. Tt can be easily shown that f. € Pol(B3). Assume that f. ¢ Pol(p)

for some p = w4, ... 4, €11, where m +n <. Let

Po(@1, s T Y1y, Yn) = /\ pw (w3, y5) | A (/\sz € {0,1}> .

JEA;

Since f. € Pol(Bs), we have fL € Pol(py).

Suppose ay, @, ...,41 € p, fia,as,...,ai41) = B ¢ p. Since
fL € Pol(py) and p(y) = po(7y) for every y # 0™+" we obtain 3 = 0™+".

Every word a4, ..., a1 contains at least one 1. Let ¢ be the minimal
number such that o, (i) = «;,(i) = 1 for some ji,j2, j1 # Jjo. Since
m + n < [+ 1, this number exists.

If i < m, then obviously (i) = 1. This contradicts the assumption.

If ¢ > m, then there exists js, ju, js 7 ja such that o, (1) = «;, () = 2.
By the definition of II there exists i’ < m such that (i — m) € A;,. Hence
o, (i) = a;,(¢") = 1. This contradicts the assumption about the minimality
of 1.

To complete the proof we need to show that f. does not preserve py ;1.
Let o; = 0P~1101H1—% ¢ pvi+1 fori € {1,2,...,1 + 1}. It can be easily
checked that fL(ay, as,...,cq11) = 01 ¢ py 1 1. Therefore, fL does not
preserve py j41.

O

Lemma 4.15. Suppose n > 2, then r3 € Pol(m(12,.. n})-

Proof. Assume the converse. Then there exist ay, ag, a3 € (12, .. ») such
that r3(a1, g, 3) = B ¢ T(12,.. n}- Since r3 preserves {0,1}, we see
that 8(1) € {0,1}. Therefore we get 5(1) = 0, a1(1) = a2(1) = 0 and
a1, az € {0,1}"*. Hence, 8 € {0,1}"*!. By the definition of 715 .}
there exists ¢ > 2 such that vy (i) = 1. It can be easily checked that 5(7) = 1.
This completes the proof.

O

Theorem 4.16. The clones of the class © have the following bases:
S = [{a + 1,right}] = [{a + 1, left}),

So = [{2z + 2y, right}] = [{2z + 2y, left}],
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SL = [{2z + 2y, 2+ 1}] = [{22 + 2y + 1}], 1S = [{z + 1}],
SLo = [{2z +2y}], T = [{2z + 2y, ps}],
C = [{plus,right}] = [{plus,left}],
D = [{plus, mo}] = [{pluso, m}] = [{plus,m, pso}],
M = [{right,left}], DM = [{m,pso}] = [{mo,ps}],
DN = [{mo}], TD = [{m,plus}], TM = [{ps,m}],
TN = [{m}], L= [{plus,pso}] = [{pluso}],
TL = [{plus}], Cz=[{pso}], TCz2 = [{ps}], Js=[{z}].
Theorem 4.17. The clones of the class ® have the following bases:
az = [{fg°.m}], a2M = [{ps,right,m}], azN = [{m, right}].
Forn >3
an = [{/5°, [} = {/fe". fo'}],
anM = [{f7 . ps}] = [{f0'}], anN = [{f7,sn}],
as = [{f5°H, axcM = [{f2°,ps}], acxcN=[{f2",sn}]
Forn >1

aP = [{right,ps}], aPN = [{sn}], aPn = [{ga}];

aP. = [{rs}], aQ = [{rs}], aW = [{right}].

Theorem 4.18. For n > 3 and m > 1 clones of the class Y have the follow-
ing bases:

aToo = [{f7 }, anmoo = [{ 7},
AT = [{30}]a anTo = [{803 f:rl}]a

Clone(T) = [{gm, f7°}], Clone(Ily N1II") = [{g1, f' }].

Theorem 4.16 can be easily checked manually. Moreover bases for clones
from the class © were already found in [9]. The sketched proof of Theo-
rem 4.17 and Theorem 4.18 is below.

Proof. The main points of the proof are listed below:

1. fL € Pol(Il' U B3), fL ¢ Pol(py 41) for I > 3 (by Lemma 4.14);
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2. f§° € Pol(py,n) for every n > 3 (it follows from the properties of the
function x V yz € Py);

3. f§ € Pol(py.n), f§ ¢ Pol(py,n+1) for every n > 3 (it follows from
the properties of the function A} € P);

4. fo° € Pol(ITU Bs) (by Lemma 4.11);

5. gn € Pol(m(12,...n}), gn & Pol(m(1,2,... nnt1y) for every n > 2 (by
Lemma 4.9);

6. 73 preserves Ty o, .. n) for every n > 2 (by Lemma 4.15).

To complete the proof we need to check that every clone M contains the
corresponding set of function B, B is not a subset of any clone M’ C M.
Moreover, we have to check that for every f € B there exists a clone M’ C
M such that B\ {f} C M.

O

We will need the definition of By and Bound from Section 1.
Theorem 4.19. Bound : II — Bry is a bijective mapping.

Proof. 1t is easy to check that if p,o € Il and p < o then ar(p) < ar(o).
This means that for every predicate p € II the set {oc | o < p} is finite.
Then there are no infinite descending chains in Et;. Hence there is a bijective
correspondence between antichains of Fr; and upsets of Ery.

There is also a natural bijective correspondence between downsets and
upsets: the complement of an upset is a downset and vice versa. Combin-
ing these two, we get a bijective correspondence between downsets and an-
tichains, where the antichain corresponding to a downset is just the set of
minimal elements of the complement of this downset. The map Bound de-
scribe exactly this correspondence, with two minor modifications:

1. we work with the quasiordered set II but not with the poset Ery, hence
we have to take into account the corresponding equivalence relation.

2. the empty downset is excluded as well as the corresponding antichain
(namely, the one-element antichain containing only the bottom ele-
ment).

O
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Theorem 4.20. Suppose M C Clone(F), F € ﬁ\ {11, Ty, Iy, I, I3, . . . },
and g : Bound(F) — M is a bijective mapping such that for every p €
Bound(F) we have

g(p) € Clone(Fj) \ Clone(Fp).
Then M is a basis for Clone(F).

Proof. First we shall show that [M] € Y. Let n be the minimal number such
that IT,, € F. Since F' # TI, this number exists. Let p’ € II,, \ F. By
the definition, there exists p < p’ such that p € Bound(F'). It can easily
be checked that p € II,, \ II,,_1. It follows from the condition that g(p) ¢
Pol(p). Hence, M ¢ Pol(Il,,) and M ¢ Clone(II,). By Theorem 4.12 we
obtain that aP,, C Clone(Il,). Hence, M Z aPy,.

Since F' # I1,,_1, we see that F' ¢ IT,,_;. By the condition of the theorem,
M C Clone(F). Then using Theorem 4.12 we obtain that [M] # aPy for
every t < n. It follows from the description of the lattice that [M] € Y.

Thus there exists G € II such that [M] = Clone(G). Let us show that F' =
G. Assume the converse, then F' C G. Let § be a minimal predicate in G \ F’
with respect to < . Since G is a downset, we have 5e Bound(F'). Then by
definition, g(&) ¢ Pol(d). Therefore, g(3) ¢ Clone(G). This contradiction
proves that [M] = Clone(F).

Let us prove that M is a basis. Assume the converse. Then there exists
M’ C M such that [M’] = Clone(F). Suppose f € M \ M’,§ = g=(f).

It can be easily checked that F' U § and

M’ C Clone(F U J)

Hence, [M'] # Clone(F'). This completes the proof.

Corollary 4.21. Suppose M € © U® U Y, then M has a basis.
Corollary 4.22. Suppose F € 11, then Clone(F) is finitely generated iff
Bound(F) is finite.

The proof of these two corollaries is below.
Proof. Suppose that Clone(F') € Y. Let us consider two cases. Suppose
F e {II,11y, 11, IIo, . . .}, then by Theorem 4.18 Clone(F') is finitely gen-
erated. It can be checked that Bound(II) = @, Bound(Ily) = {713,113}

Bound(I1;) = {712,411 } forevery i € {1,2,3,...}. This completes the
case.
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Suppose F ¢ {II,1Iy, 11y, 1Is,...}. Let us define M C Clone(F). For
every p € Bound(F) we select a function from Clone(F}) \ Clone(Fp). It
follows from Theorem 4.20 that M is a basis in Clone(F). If Bound(F) is
finite, then M is a finite basis in Clone(F).

Suppose Bound(F') is infinite, then M is an infinite basis. Assume that
there exists a finite basis M in Clone(F'). Then, there exists a finite set M’ C
M such that My C [M’]. Then Clone(F) = [M’]. This contradicts the fact
that M is a basis.

O

Corollary 4.23. Suppose F € 11, |F| < oo, then Clone(F) is finitely gener-
ated.

Proof. Let us show that Bound(F) is finite if F is finite. It can be checked
thatif p < o and ar(p)+1 < ar(o) then there exists og such that p < 0g S o
and ar(p) + 1 = ar(oy). Since F' is finite, there exists [ € {3,4,5, ...} such
that F C II'. Hence Bound(F') C IT"*! and Bound(F) is finite.

Then by Corollary 4.22 Clone(F) is finitely generated.

4.4 Relation degree
We will need the following well-known property of relation degree.

Lemma 4.24 ([5]). Suppose C1 D Cy D C5 D ... is an infinite sequence of
clones, Coo = () C;. Then d(Cx) = 0.

Theorem 4.25. Suppose M € © U ®, then

2, if M € {S,So,T,C,M,D,DM, DN, TD, TM,
TN, 1S,J3},
3, if M € {SL,SLo,L, TL, C2, TC3,aP,aPN,
d(M) = aP;,aQ,aW, AP, APN,AP,,AQ, AW},
n, ifn>2and M € {ay,anM,a,N, A,,, A,M, A,N}

n+1, ifn>2and M € {aP,, AP,};
00, if M € {asw,acM,a,N,aP, A, A oM,
A NAP};

Proof. For clones from the class © the proof follows from the description of
the lattice. We refer the reader to [12] for more details. For clones from the
set

{aP,aPN,aP,,aQ,aW, AP, APN AP;, AQ, AW}
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the theorem follows from the complete description of all essential predicates
of arity 2 from Inv(right) in Lemma 3.4. Indeed, by Lemma 3.4 we have
Inv(right) N R3 C Shift(By U Main). Hence

Inv(right) N (RY U R}) C Shift(By U By) C Inv(agmo).

So, every clone defined by such predicates contains agmg, therefore these
clones cannot be defined by predicates of arity 1 and 2.
For clones from the set

{an,anM, axN, Ay, AyM, AN}

the theorem follows from the complete description of all essential predicates
in the proof of Theorem 3.26.

For clones aP,, AP, where n > 1, the theorem follows from the proof
of Theorem 3.26.

For clones from the set

{ax,accM,a N, aP, Ao, AL M, A N, AP}

the theorem follows from Lemma 4.24.

Theorem 4.26. Suppose I' € ﬁ, F # {1 0.2}, then

d(Clone(F)) = {max{m +n | NE # @}, if|[F] < oo

00, otherwise.

d(ClOHe({ﬂ'gﬁg’g})) = 2.

Proof. For F = {7z » &} the proof follows from Lemma 3.11 and the fol-
lowing equation:

Clone({7g,0,6}) = Pol({p41, pw })-

Assume that F' # {7y » o}, Clone(F) = Pol(S), where S C Rj. By
Lemma 2.5, it can be assumed that S C Eg. It follows from Theorem 4.1 that
the set Shift(F'U Bs) is essentially closed. Hence S C Shift(F U Bs). Since
F # {7z oo}, we see that S N Shift(II) # @.

Let F' = U {o €| 0 < p}. Hence, we have
pEShift(S)NII

Clone(F) = Pol(S) 2 Pol(Shift(F’ U Bs)) = Clone(F").
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Then, by Theorem 4.4, we get F' C F”, and this implies

r;leag(ar(p)) < ggg;(ar(p)) = r;lgg(ar(p))-

This proves that

d(Clone(F)) = rglea}((ar(p)) =max{m+n |II' N F # o}.

4.5 Cardinalities of L] (F) and LY (F)

Let us define a mapping ¢ : II — Ng x N. For w4, 4,, € II' we put

¢(ma,,..a,) = (a,b), where a = n — max{|A;|}, and b is the number of
K3

different sets A; such that |A;| = max{|A,|}. We define a linear order on the

set Ny x N in the following way:
(a1,b1) < (a2,b2) <= (a1 < a2) V ((a1 = az) A (by > ba)).
The following two lemmas can easily be checked.
Lemma 4.27. Suppose p1,p2 € I, p1 < po, then ar(p1) < ar(p2).
Lemma 4.28. Suppose p1,p2 € I, p1 < pa, then ((p1) < ((p2).

Theorem 4.29. Suppose F' € ﬁ, then

Mo i F AT

f _
L5 (Clone(F))| = {57 if F =1L

Proof. Suppose F' = II, then the proof follows from the description of the
lattice. Suppose F' # II, then there exists a predicate ma, ... 4,, € II' such
that ma, . a,, ¢ F.Fori,l € N, we put

Byu={jln<j<l+ngj#itn},

Pl = TAy,. Am,B1,1,B2y,....B1 .

It can be easily checked that

hence ma,, .. a,, S pi. Since F'is a downset, we have p; ¢ F' forevery ! € N.
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Let G = {p; | i > n+ 2}. Fori > n + 2 we have
ar(pi) =m+i+n+i, ((pi)=(n+1,1).

Hence, it follows from Lemma 4.27 and Lemma 4.28 that GG consists of pair-
wise incomparable predicates. Suppose G’ C G. Put

Foo=FU{ocell|BeqG: o<}

It can be easily checked that Fig- is a nonempty downset. By Corollary 1.2, if
G1 # Ga, then Fg, # Fg,. Let M = {Clone(Fg) | G’ C G}. Obviously,
the cardinality of M is continuum and M C L (Clone(F)). This completes

the proof.
O

Theorem 4.30. Suppose M € © U ®, then

=Ny, ifM € {aP,aPN,aP,,aP,,aPs3,...,
AP,APN,AP,, AP, AP;,...};

=280 ifM €{S,S0,C, M, a.,,a,cM, a, N,
A, A M, A N}
orM € |J {an,anM,a,N, A,, A,M, AN},

n>2

L5 (M)]

< 00, otherwise.

Proof. Suppose

M 6 {S7 SO) C; Ma a007 aOOMa aDON} U ( U {ana anMa anN})
n>2

It follows from Theorem 4.29 that the cardinality of the set L% (a 7o) is
continuum. Since a,,mo C M, the cardinality of ]Lg(M ) is also continuum.

The proof for other clones follows from the description of the lattice.
O

Theorem 4.31. Suppose F € ﬁ, then

= 28 f F contains an infinite antichain;
L (Clone(F))[{ < 00, if |F| < c0;

=Ny, otherwise.
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Proof. Suppose F contains an infinite antichain G. Suppose G’ C G and G’
is not empty. Put

Fgl:{U€H|35EGIS 0'55}

It is easy to prove that Fiv is a nonempty downset. Obviously, if G # G,
then Fo, # Fg,. Let M = {Clone(Fg/) | @ # G’ C G}. Then the
cardinality of M is continuum and M C L} (Clone(F)).

Suppose F'is a finite set. Then it follows from the description of the lattice
that I (Clone(F)) is finite.

Suppose F'is infinite, but F' does not contain an infinite antichain. By The-
orem 4.8, we have a,, € L%(Clone(F)) for every n € {2,3,...}. Therefore,
L (Clone(F)) is at least countable.

Let us prove that the set Lg(Clone(F )) N'Y is at most countable. Let
F' €I, F' C F.Put G = Bound(F"), F = {§ | p € F}. It can be easily
checked that G C Bound(F) U F and

G NBound(F) = {p € Bound(F) |V6 e GNF : =(6 < p)}.

Hence, the set G is uniquely determined by the set G N F. Since F does
not contain an infinite antichain, the set G' N F is finite. Therefore, ev-
ery clone Clone(F”) is defined by a finite set of predicates. Then the set
LI (Clone(F)) N Y is at most countable. Since the class © is finite and the
class @ is countable, the set ]Lg(Clone(F )) is countable.

O

Let us define a partial order on the set Nij. We say that
(a1y. . an) < (b1, .., by),
ifforeveryi € {1,2,...,n}eithera; =b; = 0,0r0 < a; < b;.
Lemma 4.32. Suppose F' C Ny, F'is an antichain. Then F' is finite.

Proof. The proof is by induction on n. If n = 1 then the proof is trivial.
Assume the converse. Suppose F' is infinite. Let

(1, ifis o
90 =00 ifizo.

To each tuple (ay,...,a,) from F assign a tuple (sign(ay),...,sign(ay))
from {0, 1}". Since the set {0, 1}" is finite, there exists a tuple assigned to
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infinitely many tuples from F. Hence, without loss of generality it can be
assumed that to each tuple from F' we assign the same tuple from {0, 1}"™.

Suppose o = (aq,...,a,) € F. Then for every 8 = (by,...,b,) € F
such that « # 5 we have

bi<arVby<agV...Vb, <a,.

Hence, there exists ¢ € {1,2,...,n} such that b; < a; for infinitely many
tuples (by,...,b,) from F. Therefore, there exists ¢ < a; such that b, = ¢
for infinitely many tuples (by, ..., b,) from F. Let Fj be the set of all tuples
(b1,...,bn) € F such that b, = c. Obviously, by removing i-th element
from every tuple from Fjy we obtain an infinite antichain from Ng_l. This
contradicts the inductive assumption.

O

Lemma 4.33. Suppose F' C 11,,, F' is an antichain. Then F is finite.

Proof. Let P({1,2,...,n}) be the set of all subsets of {1,2,...,n}. Let
¢:P{1,2,...,n}) = {1,2,...,2"} be a bijective mapping.

Suppose ¢ € {1,2,...,2"}, wa, .4, €II7. Let ¢;(ma,, . 4, ) bethe
number of sets A; such that ¢(A;) = i. Letw : IT,, — N3",

w(p) = (Y1(p), ¥2(p), ..., Yan(p)).

It can be easily checked that if w(p1) < w(p2), then p; <? py. Therefore, the
set {w(p) | p € F} is an antichain. By Lemma 4.32 this set is finite. Hence,
the set F' is also finite.

O

Lemma 4.34. Suppose F' C Iy, F is an antichain. Then F' is finite.

Proof. Assume the converse. Let p € F N II". Since F' is infinite, by
Lemma 4.33 there exists 0 € F' \ I, 2. It is easy to show that

Ps 7T{1,2,...,n},®,@,...,® Sﬁ{l,Q ..... m+n—1} SU'
—_————

m—1

Hence p < o. This contradiction completes the proof.
O

Lemma 4.35. Suppose p € II'", ((p) = (1,r), r < n — 1, then there exist
o € ™Y and t > v such that o' < p and ((p') = (1,1).
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Proof. Suppose p = 74, .. A, - Let Sbethesetofalli e {1,...,n} such
that for every j we have {i} U A; # {1,...,n}. Since r < n — 1, we obtain
that |S| > 2. Let 41,42 € S, i1 # iy. Without loss of generality it can be
assumed that iy = n — 1,93 =n. Put A, = A; N {1,...,n — 1}. Then

3 1
7TA’1,...,A;n,{172,‘..,n72}S TAL,.. A z§ TAL .0 Apy -

m?

It is easy to check that (741 .. a: (12,..n-2y) = (1,1), where ¢ > r. This
completes the proof.
O

Lemma 4.36. Suppose I' € ﬁ, F ¢ (II,,Ully ) for every n € N. Then there
exists an infinite antichain G C F.

Proof. Let us construct an infinite sequence p1, p2, p3, . .. such that p; € F,
ar(p;) < ar(p;+1) and C(p;) > C(pi+1) forevery i € {1,2,3,...}.

Let p; be an arbitrary predicate from F' \ Iy such that (p1) = (1,t) for
some t € N. Since F' Z Ily and F is a downset, p; exists. Suppose we
already have p1, pa, ..., pq, and forevery i € {1,2,...,q} we have ((p;) =
(1,%;) for some ¢; € N. Let r = ar(p,). Let us define pg1.

Let 0 € F \ (Ilyy U1II3,). Suppose o € II™. Obviously, there exists
oo € I such that g <3 o and (o) = (1, s) for some s.

We have n > 3r. Using Lemma 4.35 several times for predicate oy we
get predicate o’ such that o’ < og and ((¢’) = (1,t), where t > r > t,.
It is necessary to mention that if we obtain a predicate o’ € H;",/ such that
¢(o")=(1,t) and t > n’ — 1, then we do not apply Lemma 4.35 anymore. It
is easy to check that n’ > 2r in this case.

Obviously, ((0’) < ((pg) and ar(c’) > ar(p,). Then we put pg1 = o’.
It follows from Lemma 4.27 and Lemma 4.28 that predicates in this sequence
are pairwise incomparable. This completes the proof.

O

Theorem 4.37. Suppose F' € ﬁ, then
<oo, if|F| <oo;

ILL (Clone(F))| { = Ry, if |F| = oo, F C (IL, Uy ) for some n € N;

= 2% otherwise.

Proof. Suppose F is finite. By Theorem 4.31 we get |} (Clone(F))| < oc.
Suppose F' ¢ (II,, U Iy ) for every n. Then combining Lemma 4.36 and
Theorem 4.31 we obtain that |1Lg(Clone(F))| = 2%o,
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Suppose there exists n € N such that F' C II,, U IIy,. Then combining
Lemma 4.33, Lemma 4.34 and Theorem 4.31 we get \]Lg(Clone(F))\ = Np.
O

Theorem 4.38. Suppose M € © U ®, then

=Ny, fM € {Csy,TCz,ay,a.cM,a,N,aP,aPN,
A.,A.M,A. N AP, APN}
|]Lg(M)\ orM € |J {aPn, AP,};

n>1
= 2N07 lfM € {J3aaP007aQaaW7APOCaAQaAW7};

< 00, otherwise.

Proof. For all clones except aP,, AP, the proof follows from the descrip-
tion of the lattice and Theorem 4.37. The clones aP,, and AP, are dual with
respect to the transposition. Hence we consider only aP,,.

By Theorem 4.12, aP,, C Clone(F) iff F' C TII,,. Hence, all clones from
Lg(aPn) except countable number belong to Lg(Clone(Hn)). Therefore, by
Theorem 4.37 we obtain that Lg (aPy,) is countable.

O

MAIN NOTATIONS
o N={1,2,3,...}.

e No={0,1,2,3,...}.

By ={0,1,2,...,k—1}.

P =A{f1f:Ef = Ex}.

P, = | P

n>1

R ={p|p: E} - {0,1}}.

R,=U RZ’.
>0

| M| — the cardinality of the set M.

[M] — the closure of M.

e Pol(p) — the set of all functions f € P} that preserve a predicate p.
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Pol(S) = N Pol(p).

peS

Inv(f) — the set of all predicates p € Ry that are preserved by a
function f.

Inv(M) = fQM Inv(f).

p* — the predicate that is dual to p with respect to the transposition.
IT — the set of all nonempty downsets of II.

Clone(F) = Pol (F U {pi1,pw}).

Clone™(F) = Pol (F* U{p41,pi}) -

Two(ay, . ..,a,) — the set of all elements that occur in the tuple
(ai,...,ay) more than once.

Er — the set of all equivalence classes generated by the quasiorder <
on the set 11.

By — the set of all antichains of E; excluding the one that consists of
the bottom element 7¢ 5 & 1 only.

Bound(F):={pe€FEn|pgL FVo e En(c <p=—0 CF)}.
d(A) = min{h | 3Q C R% : Pol(Q) = A}.

Ly=0UdUTY

Li(F):={F' €Ls | F C F'}.

LY(F) == {F' €Ly | F' C F}.

ar(p) — the arity of a predicate p.

VarValues(p, i) = {a(i) | « € p}.

Shift(p) — the set of all predicates that can be obtained from p by
shifting and permutation of variables.

Shift(S) = |J Shift(p).

peES

And(S) — the set of all p € Ry that can be presented as a conjunction
of predicates from S.
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Strike(p, i) — the predicate that is obtained from p by striking the é-th
TOW.

Strike(p) — the set of all predicates that can be obtained from p by
striking rows.

Strike(S) = |J Strike(p).
peES

|| — the length of «.

l(@) = a(lal =1+ 1)...ala] = Da(|al).

By = {false,true, p,1, o3, {0}, {1}, {2}, {0, 1}, {0, 2}, {1,2} }.

0 1
B, = .
1 {(0 1) 7pSapV,27pN7pW}

By — the set of all predicates p € Inv(right) such that for every
i€{1,2,...,ar(p)} we have VarValues(p, i) C {0,1}.

M ain — set of all predicates p € R3 such that the following conditions
hold for some m € {1,...,ar(p)} :

1. VarValues(p,i) C {0,1} forevery i € {1,2,...,m}.

2. Forevery am+1,---,0ar(p) € 3 we have
p(L s L Gmy1s e Qar(p)) = 1
- (0 1 ... k
% = (0 1. k)
false — the predicate of arity O that takes on value 0.

true — the predicate of arity O that takes on value 1.
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